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Abstract. The design of wireless power transfer (WPT) and 

energy harvesting (EH) solutions poses different challenges 

towards achieving maximum RF-DC conversion efficiency 

in these systems. This paper covers several selected 

challenges when developing WPT and electromagnetic EH 

solutions, such as the design of multiband and broadband 

rectifiers, the minimization of the effect that load and input 

power variations may have on the system performance and 

finally the most optimum power combining mechanisms 

that can be used when dealing with multi-element 

rectifiers. 
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1. Introduction 

Wireless power transfer (WPT) and energy harvesting 

(EH) solutions are receiving a lot of attention towards 

providing autonomy to a wide variety of sensors and 

devices. These self-sustainability properties allow 

implementing concepts such as the Internet of Things (IoT), 

smart cities and smart buildings to name a few. However 

both WPT and EH solution synthesis pose several design 

challenges that need to be addressed towards achieving an 

optimum performance.  

In the case of electromagnetic EH the amount of 

available power from a selected RF energy source may be 

variable and unpredictable. This is why several solutions 

where it is possible to harvest from more than one 

frequency band have been proposed in the literature [1-11]. 

These solutions are based on the use of multiband rectifiers 

or in the combination of the DC outputs of several single 

band rectifiers. In [3,5] dual band electromagnetic energy 

harvesting is proposed where the energy is collected form 

two different RF frequency bands, while in [1-2,4] triple 

band EH is considered. Some other works focus on 

broadband electromagnetic EH [7-11] where the energy is 

collected form a selected range of continuous frequencies. 

A common challenge for both WPT and EH is the fact 

that due to the nonlinear nature of the rectifying devices the 

performance of rectifier circuits in terms of RF-DC 

conversion efficiency get easily affected by variations in the 

input power level and also in the output load. In order to 

minimize the effect these variations have on the overall 

performance some authors have considered using several 

rectifying branches [11] each one optimized to operate at a 

different input power level. Other works combine the use of 

a JFET transistor and a Schottky diode to synthesize a 

rectifier that can operate for both large and small input 

powers levels [13]. Some other work propose the use of 

resistance compression networks (RCN) in order to 

minimize the variations in power and load that reach the 

rectifying element [14, 15]. 

Other challenge in designing rectifier circuits for 

WPT and EH is the use of arrays of either antennas or 

rectenna elements. The selection of either one of the 

options depends on the amount of power that is being 

received and the rectifying element selected. One challenge 

in designing these arrays is the DC power combining 

mechanism of the rectifier outputs. Some works have 

covered this topic [16-18] showing results on how the 

optimum load varies depending of the type of DC power 

combination performed, series, parallel or combined. 

In this paper, some of the previously mentioned 

solutions towards addressing the challenges in WPT and 

EH solutions are covered in more detail. In Section II, a 

state of the art review of existing multiband and broadband 

designs of rectifiers is presented and an example of a 

broadband rectifier is explained. In Section III, the design 

of a rectifier using RCN is presented for minimizing the 

effect that load and input power variations have on the 

rectifier performance. Section IV focuses on the design of a 

rectenna array and how the DC outputs can be combined 
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towards maximizing the RF-DC conversion efficiency and 

how the optimum load is different depending on the type of 

combination performed (series/parallel) as well as on the 

angle of arrival of the RF incoming signal. 

2. Multi-band/Broadband rectifiers 

 As previously mentioned, a key goal in rectenna and 

rectifier design is to maximize the RF-DC conversion 

efficiency. One alternative is to perform a multiband or  

broadband design for the rectifier circuit. This is important 

if one is considering to perform electromagnetic EH form 

different broadcast transmissions that operate at different 

frequencies.  

Table 1 shows several state of the art results regarding 

multiband rectifier designs [1-5] showing efficiencies in the 

order of 15% for -20dBm input power for dual band 

rectifiers [5] where a single diode is used and efficiencies in 

above 25 % for triple band rectifiers with -15 dBm input 

power where a dedicated branch for each frequency is 

considered [2]. 

Table 2 shows several state of the art results regarding 

broadband rectifier design [7-11]. The design in [10] is 

capable of harvesting in the 2-18 GHz frequency band with 

efficiencies of 20% for 15dBm input power at 3 GHz using 

a single diode rectifier in a 64 element array configuration. 

The design in [8] uses a 5-stage charge pump circuit to 

obtain efficiencies >30% for 18dBm input power. 

 

 

Reference 

Frequency of 

operation 

(MHz) 

Topology Pav (dBm) Efficiency (%) RL (Ohm) Vdc (mV) 
No. 

elements 

[1] 
900,1800, 

2400 

Full wave 

rectifier 
1.76 

60 at 900 MHZ 

47 at 1760 MHz 

33.5 at 2.45 GHz 

6300 

2381 at 900 MHZ 

2100 at 1760 MHZ 

1774.8 at 2.45 GHz 

1 

[2] 
900,1800, 

2400 

Three charge 

pump 

branches 

-15 

45 at 900 MHz 

46 at 1800 MHz 

25 at 2.45 GHz 

50000 

0.82 at 900 MHz 

0.85 at 1800 MHz 

0.62 at 2.45 GHz 

1 

[3] 915, 2450 
Single diode 

rectifier 

-11 at 915 

MHz 

-13.5 at 2.45 

GHz 

4.7 at 915 MHZ 

56.2 at 2.45 GHz 
2200 

200 at 915 MHz 

313.5 at 2.45 GHz 

1 

[4] 
900,1800, 

2400 

Single series 

diode 
27 

~50 at 900MHz, 

1800MHz, 2.4 

GHz 

50 

~250 mV at 900MHZ, 

1800MHZ, 2.4GHz 

1 

[5] 850, 1850 
Single series 

diode 
-20 

15 at 850MHZ 

15 at 1850 MHz 
2200 

57.4 at 850 MHz 

57.4 at 1850 MHz 

1 

[5] 850, 2450 
Single series 

diode 
-20 

18 at 850MHZ 

10 at 2.45 GHz 
2200 

46.9 at 850MHz 

62.9 at 2.45 GHz 

1 

[6] 
791, 1570, 

2340 

Single series 

diode 
-10 

~40 at 791MHz, 

1570MHz, 

2340MHz 

1470 

~242 at 791MHz, 

1570MHz, 2340MHz 

1 

Tab. 1. Comparison of different multiband rectifier design. 

 

Reference 
Frequency of 

operation 
Topology Pav (dBm) Efficiency (%) RL (Ohm) Vdc (mV) 

No. 

elements 

[7] [2.41-2.47]GHz 
 Single shunt 

diode 
-20 24.3 1800 

70 1 

[8] ~ [800-1000] MHz 
5 stage charge 

pump circuit 
18 31.8 200 

6000 1 

[9] [600-1150]MHz 

Class F-1 

amplifier 

based 

40 >60 34 

521.5 1 

[10] [2-18]GHz Single diode 
[-17…+15] at 

3GHz 

[0.1-20] at 

3GHz 
100 

[2.5-790] at 

3GHz 

64 

[11,19] [470-860] MHz Single diode 10 >60   1 

Tab. 2. Comparison of different broadband rectifier design. 

 

The challenge in designing ultra-wideband rectifiers is 

of fundamental nature. A rectifier circuit is a capacitive 

load, with an equivalent circuit which consists of a shunt 

resistor in parallel with a shunt capacitor. The equivalent 

circuit elements are nonlinear in nature and depend on the 

input power, output load as well as the circuit topology of 

the rectifier [19]. The minimum reflection coefficient that 
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can be achieved using a lossless network to obtain 

broadband impedance matching over a desired frequency 

band is bound by the theoretical limit obtained in the work 

of Bode and Fano [20]. In [19], a wideband rectifier with 

an octave bandwidth is proposed where a matching network 

based on a non-uniform transmission line is used. A photo 

of the rectifier is shown in Fig.1 and the results in terms of 

RF-DC conversion efficiency versus frequency are depicted 

in Fig. 1. A measured efficiency of more than 60% was 

obtained for 10 dBm input power in the 470 MHz to 860 

MHz frequency band. 

 

(cm)
 

Fig.1 Broadband rectifier operating in the 470-860 MHz 

frequency band. 
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Fig. 2 RF-DC conversion efficiency versus frequency for 

the broadband rectifier of Fig.1 [19]. 

3. Rectenna arrays and DC power 

combining 

It is well known that there exists an optimum load in a 

rectifier circuit that maximizes its RF-DC conversion 

efficiency. This optimum load depends on several 

parameters, namely the available input power, the signal 

characteristics as well as rectifier circuit topology [21]. It is 

possible to set the value of the optimum load by using a 

rectenna array and connecting the various rectifier DC 

outputs in series or parallel combinations [16-18]. When 

designing rectenna arrays there is a trade-off between 

designing antenna subarrays where each sub-array feeds 

one rectifier or creating a full rectenna array where one 

antenna feeds one rectifier. The first one first combines the 

RF power and the DC outputs and the second one combines 

all the DC rectifier outputs. The target is always to 

maximize the RF-DC conversion efficiency.  

Fig. 3 shows a 2x2 rectenna array designed to operate 

at 2.4 GHz. The rectenna elements consisted of a shorted 

circular slot antenna, an impedance matching network and a 

series Shottky diode rectifier. 

 
(a) 

 
(b) 

  
(c) 

 
(d)  

 

Fig. 3 Rectenna array, a) fabricated protoype. antenna side, 

b) fabricated prototype rectifier side, c) receive rectenna 

array setup in anechoic chamber, d) transmitter setup 

exctiting the rectenna array. 
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The value of the optimum load resistance was 

investigated for different topologies for the combination of 

the rectifiers DC outputs but also for different angles of 

incidence of the incoming continuous wave (CW) signal. 

The results are shown in Fig. 4 where it can be seen that 

agreeing with other existing studies in the literature [16-

18], the optimum load is increased when a series rectifier 

connection is formed, whereas it is reduced when a parallel 

connection is used.  

The study performed versus the direction of the 

incoming wave shows that the optimum load is also 

dependent on this direction due to the existing mutual 

coupling among the antenna elements. For the rectenna 

array in Fig.3 the optimum load increases as the angle of 

incidence deviates from broadside. 
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Fig. 4 Rectenna array output dc power versus the output 

load resistance for different incoming wave angle of 

incidence relative to broadside (a) series connection of the 

rectifier outputs, b) parallel connection of the rectifier 

outputs. 

4. Load/input power variations in 

rectifier circuits 

The RF-DC conversion efficiency in a rectifier circuit 

may be affected by variations in the input power level and 

in the output load resistance. This means when designing a 

rectifier it is of key importance to minimize the effect these 

variations will have on the rectifier performance by 

selecting a rectifier architecture that is insensitive to power 

and load changes. In [22] a method to improve the dynamic 

range in rectifier circuits was proposed. This method makes 

use of two branches, such as in a Doherty topology used in 

power amplifier design, to achieve efficiencies above 50% 

in an input power level range from -7dBm to 16 dBm.  In 

[14] a resistance compression network (RCN) is used to 

keep a high RF-DC conversion efficiency versus a large 

range of output load values. The RCN is formed by two 

parallel branches which have two identical variable loads 

connected in series with some reactive elements that 

introduce opposite phase response in the two branches at 

the desired operation frequency. More recently, in [15] a 

dual band RCN based rectifier circuits has been proposed 

where the reactive element networks consist of dual band 

bandpass filters sections. These dual band bandpass 

sections are formed by a series and a shunt LC section. The 

opposite phase response in the two branches is obtained by 

using the same network but reversing the node where it is 

connected to the varying load [14,15]. The schematic 

representation of the dual band RCN based rectifier in [15] 

is shown in Fig.5 and its RF-DC conversion efficiency is 

compared to the efficiency of a conventional dual band 

rectifier in Fig. 6, showing a higher efficiency over a wider 

range of load values. As it can be seen, it is possible to 

obtained improved performance in terms of insensitivity to 

load variations by sacrificing circuit complexity introducing 

additional circuit branches and rectifier elements. 
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Fig. 5 Dual band RCN used in the rectifier design in [15]. 

Parallel connection of two branches which include identical 

copies of the variable load and reactive networks 

introducing a properly designed and opposite phase at the 

two desired operation frequencies.  
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Conclusions 

In this paper a review of some of the existing challenges in 

WPT and EH solutions have been presented. More 

specifically, this paper has shown how the use of multi-

band and broadband rectifiers can be used to maximize the 

amount of harvested power, how RCN based rectifiers can 

minimize the effect that load variations have on the RF-DC 

conversion efficiency and how the output load can be 

tailored to maximize the RF-DC conversion efficiency in 

rectenna arrays by selecting the DC power combining 

topology (series/parallel).  
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RCN Rectifier, 915 MHz

Conventional Rectifier, 915 MHz
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RCN Rectifier, 2.45 GHz

Conventional Rectifier, 2.45 GHz

 

Fig. 6 - Dual band RCN based rectifier [15]. RF-DC 

conversion efficiency versus output load compared to a 

conventional dual band rectifier, (a) 915 MHz, (b) 2.45 

GHz. 
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