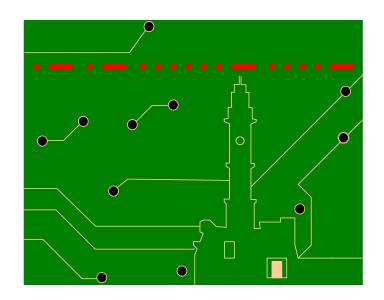
ΤΗΛ412 Ανάλυση & Σχεδίαση (Σύνθεση) Τηλεπικοινωνιακών Διατάξεων

Διαλέξεις 8-9



Άγγελος Μπλέτσας

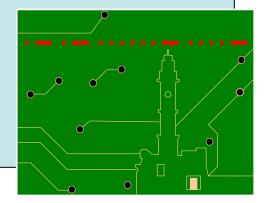
ΗΜΜΥ Πολυτεχνείου Κρήτης, Φθινόπωρο 2014

Διαλέξεις 8-9 - Κεραίες (Από την οπτική γωνία του μηχανικού!)

- Εξισώσεις Helmholtz & Maxwell (&vector calculus).
- Far Field Coupling.
- Antenna Characteristics: VSWR, RL, Efficiency, Gain,

Bandwidth, HPBW, Polarization.

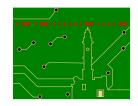
- Rough Estimation in High-Gain Antennas.
- Polarization Mismatch



Για την σημερινή διάλεξη έχει χρησιμοποιηθεί υλικό κυρίως από το βιβλίο

Kai Chang, "RF and Microwave Wireless Systems", Wiley Series in Microwave and Optical Engineering, John Wiley & Sons, 2000.

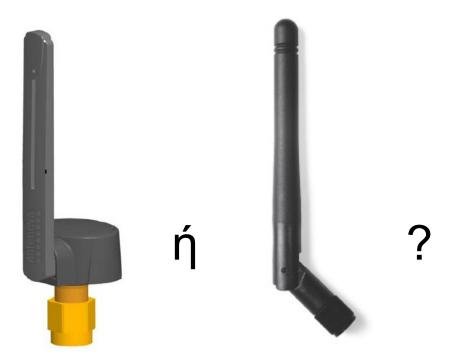
Βασική ερώτηση μαθήματος

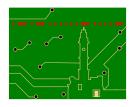


INVESTIGATE: Learn why R-T-I Training is different. Find out why R-T-I Trained menget "Quick Recolts" and "Big Remits". Send today for my hig book "Radio's Funue and Yours". The book

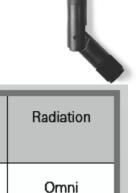
4 BIG WORKING OUTFITS INCLUDED

These are preliably the biggest and most expensive Working Outfins ever included with a bence-training Course. You use them to build up to sling equipment—to experiment with—to do actual Radio work. It's Shep Training for the bence.





	Typical performance	
Peak gain	2.2 dBi	
Average gain	-1.0 dBi	
Average efficiency	80%	
Maximum Return Loss	-13 dB	
Maximum VSWR	1.6:1	



I	Frequency [GHz]	Gain [dBi]	Impedance [Nom]	VSWR	Polarization	Electrical Length	Radiation
I	2.4 – 2.5	2.0	50 Ω	≤ 2.0	Vertical	1/4, dipole	Omni

Ορισμός

- Κεραία = διεπαφή(i.e. interface) μεταξύ κυμάτων/σημάτων.
- Κεραία ≡ συντονισμός
- > Κεραία = μέγιστη ακτινοβολία.
- Κυματοδηγός = ελάχιστη ακτινοβολία.
- > Χαρακτηρισμός: γεωμετρία, κέρδος, λωβός, εύρος ζώνης.

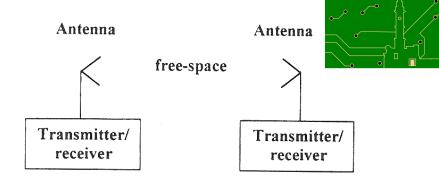
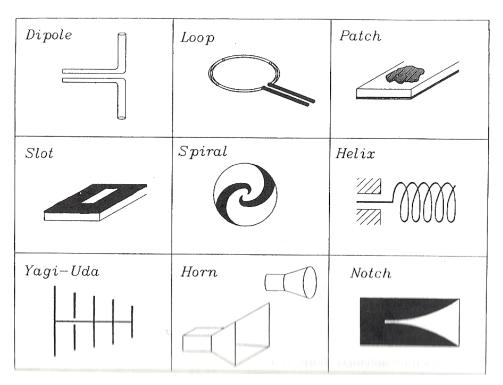
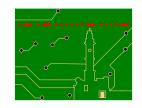
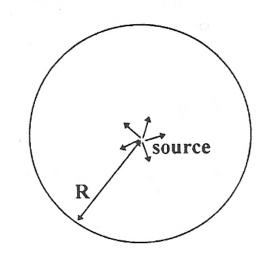


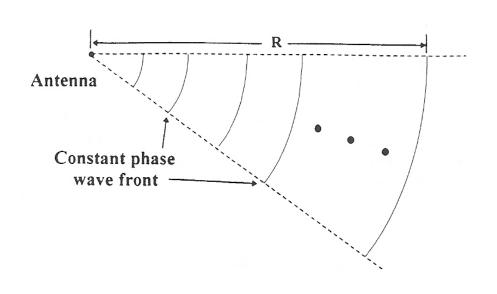
FIGURE 3.1 Typical wireless system.





$$\nabla^2 \vec{E} + k_0^2 \vec{E} = 0$$

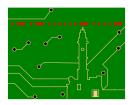


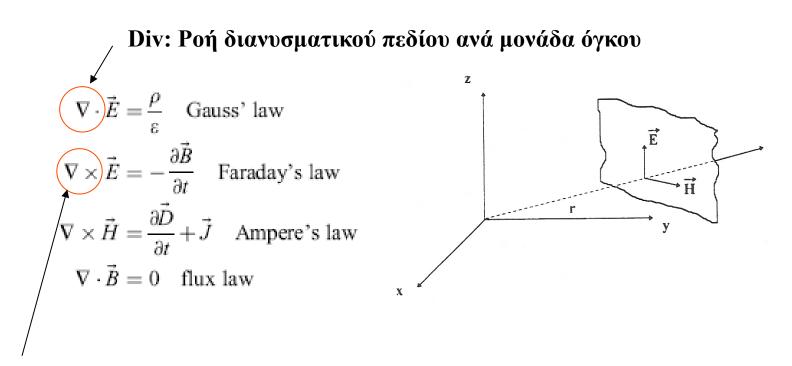


- > Θεωρητικό (και μόνο) εργαλείο.
- Μέτωπο κύματος σφαιρικό.
- Πυκνότητα ισχύος:

$$P_{\rm d} = \frac{P_{\rm t}}{4\pi R^2}$$

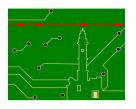
- Μεγάλο R => επίπεδο κύμα (όχι σφαιρικό)
- ➤ H/M πεδίο: Εξίσωση Κύματος (Helmholtz).





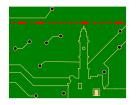
Curl: Κυκλοφορία διανυσματικού πεδίου ανά μονάδα επιφάνειας

Basic E/M Units



- > charge density ρ (Coulomb/m³), current density J (Ampere/m²)
- > permittivity ε: Farad/m
- ➤ Electric Field E: Volt/m
- > permeability μ: Henry/m
- ➤ Magnetic Field H: Ampere/m
- > Magnetic flux density B=magnetic flux/surface=μ H: Tesla
- \triangleright Magnetic flux Φ : Weber = Henry Ampere
- > Electric Displacement D=ε E: Coulomb/m²

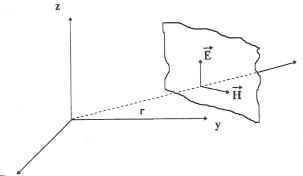
Ουμάστε διανυσματική ανάλυση?



Let $f: \mathbf{R}^3 \to \mathbf{R}$ and $\mathbf{F}: \mathbf{R}^3 \to \mathbf{R}^3$. Write $\mathbf{F} = (f_1, f_2, f_3)$. Similarly for g and \mathbf{G} .

Define:

$$\operatorname{grad}(f) \equiv \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$
$$\operatorname{div}(\mathbf{F}) \equiv \nabla \cdot \mathbf{F} = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}$$
$$\operatorname{curl}(\mathbf{F}) \equiv \nabla \times \mathbf{F} = \left(\frac{\partial f_3}{\partial y} - \frac{\partial f_2}{\partial z}, \frac{\partial f_1}{\partial z} - \frac{\partial f_3}{\partial x}, \frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right)$$
$$\operatorname{laplace}(f) \equiv \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$
$$\operatorname{laplace}(\mathbf{F}) \equiv \nabla^2 \mathbf{F} = \left(\nabla^2 f_1, \nabla^2 f_2, \nabla^2 f_3\right)$$



Θυμάστε διανυσματική ανάλυση?

grad
$$\phi = \{ \begin{array}{ccc} \partial \phi & \partial \phi & \partial \phi \\ \hline - & - & - \\ \partial x & \partial y & \partial z \end{array} \right),$$

it is the derivative of ϕ in each direction. The gradient of a scalar field is a vector field. An alternative notation is to use the *de*/or *nabla* operator, $\nabla \phi$ = grad ϕ .

Divergence of a vector field

Let F(x,y,z) be a vector field, continuously differentiable with respect to x,y and z. Then the divergence of F is defined by

Laplacian

div F is a scalar field it can also be written as $\operatorname{div} \mathbf{F} =
abla \cdot \mathbf{F}$

$$\Delta f = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2}$$

Curl of a vector field

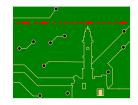
$$\Delta f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \varphi} \frac{\partial}{\partial \varphi} \left(\sin \varphi \frac{\partial f}{\partial \varphi} \right) + \frac{1}{r^2 \sin^2 \varphi} \frac{\partial^2 f}{\partial \theta^2}$$

Let F(x,y,z) be a vector field, continuously differentiable with respect to x,y and z. Then the curl of F is defined by

$$\left| \begin{array}{ccc} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{array} \right| = \operatorname{curl} \mathsf{F} = (\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z})i - (\frac{\partial F_3}{\partial x} - \frac{\partial F_1}{\partial z})j + (\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y})k$$

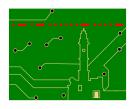
curl F is a vector field it can also be written as $\nabla \times F$.

Notice that $\nabla \cdot (\nabla \times \mathbf{F}) = 0$



$$\begin{split} \operatorname{grad}(f+g) &\equiv \nabla \left(f+g\right) &= \nabla f + \nabla g \\ \operatorname{div}(\mathbf{F}+\mathbf{G}) &\equiv \nabla \cdot \left(\mathbf{F}+\mathbf{G}\right) = \nabla \cdot \mathbf{F} + \nabla \cdot \mathbf{G} \\ \operatorname{curl}(\mathbf{F}+\mathbf{G}) &\equiv \nabla \cdot \left(\mathbf{F}+\mathbf{G}\right) = \nabla \cdot \mathbf{F} + \nabla \cdot \mathbf{G} \\ \operatorname{grad}(fg) &\equiv \nabla \cdot \left(fg\right) &= f \nabla g + g \nabla f \\ \operatorname{div}(f\mathbf{G}) &\equiv \nabla \cdot \left(f\mathbf{G}\right) &= \nabla f \cdot \mathbf{G} + f \nabla \cdot \mathbf{G} \\ \operatorname{curl}(f\mathbf{G}) &\equiv \nabla \cdot \left(f\mathbf{G}\right) &= \nabla f \times \mathbf{G} + f \nabla \times \mathbf{G} \\ \operatorname{grad}(\mathbf{F}\cdot\mathbf{G}) &\equiv \nabla \cdot \left(\mathbf{F}\cdot\mathbf{G}\right) &= (\mathbf{F}\cdot\nabla)\mathbf{G} + (\mathbf{G}\cdot\nabla)\mathbf{F} + \mathbf{F} \times (\nabla \times \mathbf{G}) + \mathbf{G} \times (\nabla \times \mathbf{F}) \\ \operatorname{div}(\mathbf{F}\times\mathbf{G}) &\equiv \nabla \cdot \left(\mathbf{F}\times\mathbf{G}\right) &= \mathbf{G}\cdot\nabla \times \mathbf{F} - \mathbf{F}\cdot\nabla \times \mathbf{G} \\ \operatorname{curl}(\mathbf{F}\times\mathbf{G}) &\equiv \nabla \times \left(\mathbf{F}\times\mathbf{G}\right) &= \mathbf{F}(\nabla \cdot \mathbf{G}) - \mathbf{G}(\nabla \cdot \mathbf{F}) + (\mathbf{G}\cdot\nabla)\mathbf{F} - (\mathbf{F}\cdot\nabla)\mathbf{G} \\ \operatorname{div}\operatorname{grad} f &\equiv \nabla \cdot \nabla f &= \nabla^2 f = \operatorname{laplace} f \\ \operatorname{curl}\operatorname{grad} f &\equiv \nabla \times \nabla f &= 0 \\ \operatorname{div}\operatorname{curl} \mathbf{F} &\equiv \nabla \times (\nabla \times \mathbf{F}) &= 0 \\ \operatorname{curl}^2\mathbf{F} &\equiv \nabla \times (\nabla \times \mathbf{F}) &= \nabla \nabla \cdot \mathbf{F} - \nabla^2 \mathbf{F} = \operatorname{grad}\operatorname{div} \mathbf{F} - \operatorname{laplace} \mathbf{F} \\ \operatorname{grad}\operatorname{div} \mathbf{F} &\equiv \nabla \nabla \cdot \mathbf{F} &= \nabla \times (\nabla \times \mathbf{F}) + \nabla^2 \mathbf{F} = \operatorname{curl}^2 \mathbf{F} + \operatorname{laplace} \mathbf{F} \\ \end{array}$$

Θυμάστε διανυσματική ανάλυση?



Τα παρακάτω δείχνουν το Intuition... (curl (rotation)= vector circulation per unit area, div=vector flux per unit of volume, grad=direction of rate of change)

Curl

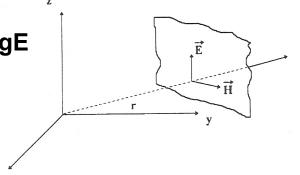
http://www.youtube.com/watch?v=fYzoiWIBjP8

Div

http://www.youtube.com/watch?v=tOX3RkH2guE

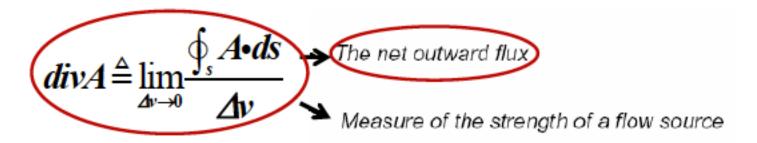
Grad

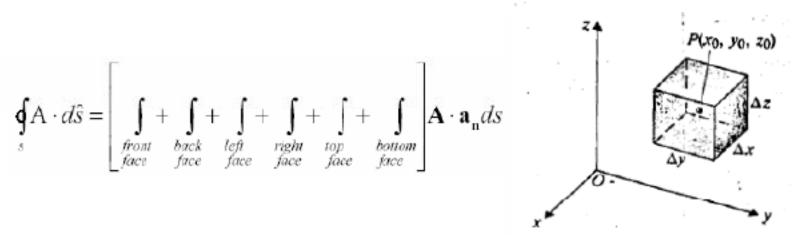
http://www.youtube.com/watch?v=OB8b8aDGLgE



Divergence of A at a point:

net outward flux of A per unit volume, when the volume around the point of interest tends to zero.





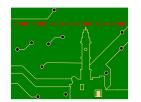
Divergence Theorem (aka Gauss Theorem):

volume integral of of div of vector A = flux of A through bounding surface of that volume.

$$\int_{v} \nabla \cdot A dv = \oint_{s} A \cdot ds$$

$$divA \triangleq \lim_{\Delta v \to 0} \frac{\oint_s A \cdot ds}{\Delta v}$$
 The net outward flux

Measure of the strength of a flow source



Curl of A at a point: vector, with

magnitude = the maximum net circulation of vector A per unit area around that point, as the area tends to zero,

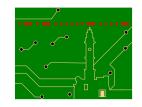
direction = normal to area, when area is oriented such that circulation is maximized.

Circulation of A around contour C
$$\equiv \oint_c A \cdot d\hat{l}$$
 A: force \Rightarrow circulation: work A: E-field \Rightarrow circulation: electromotive force

Circulation of A in closed path c = line integral of A over c.

$$curl \mathbf{A} \equiv \nabla \times \mathbf{A} = \lim_{\Delta s \to 0} \frac{1}{\Delta S} \left[\mathbf{a}_n \oint_{c} \mathbf{A} \cdot d\hat{l} \right]_{\text{max}}^{\mathbf{a}_n}$$

Curl Theorem (aka Stokes Theorem):

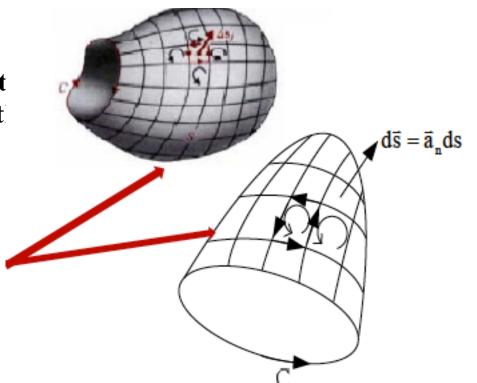


the surface integral of curl of a vector over an open surface

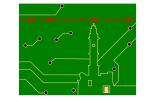
=

the closed line integral of the vect over the bounding contour of of t surface.

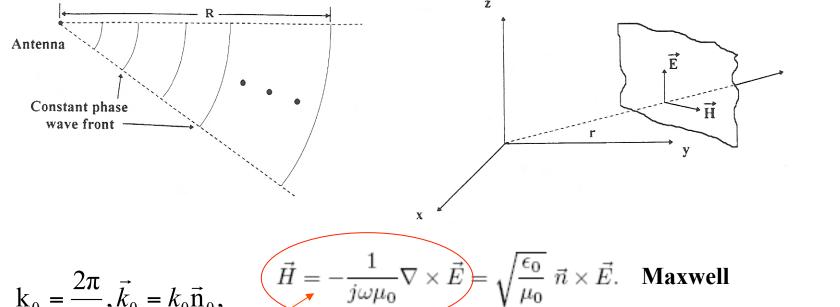
$$\oint_{S} (\nabla \times \vec{A}) \cdot d\vec{s} = \oint_{C} \vec{A} \cdot d\vec{\ell}$$



Question: what are the units of $div(\vec{A})$, $curl(\vec{A})$?



Εξίσωση Κύματος (Εξίσωση Helmholtz): Επίλυση

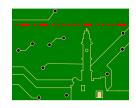


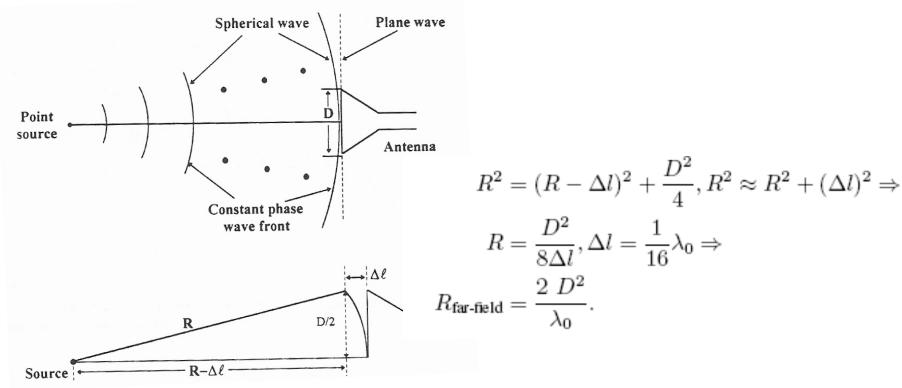
$$k_{0} = \frac{2\pi}{\lambda_{0}}, \vec{k}_{0} = k_{0}\vec{n}_{0},$$

$$\vec{E} = \vec{E}_{0}e^{-j\vec{k}_{0}\vec{r}},$$

Λύση Helmholtz

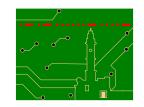
Far Field Region





- > Region where plane-wave is a "good" approximation!
- > Practically, where antenna patterns are independent of distance.

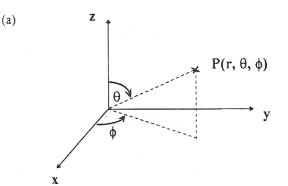
Antenna Analysis (in one minute)

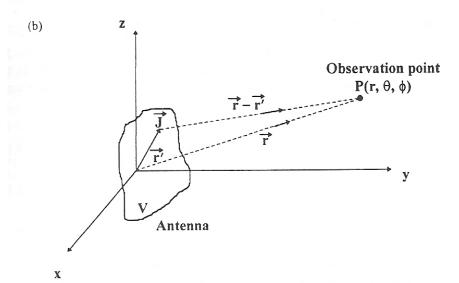


- ➤ Solution through inhomogeneous Helmholtz equation.
- Antenna with volume V and current J:

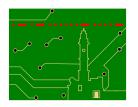
$$\begin{split} \nabla^2 \vec{A} + k_0^2 \vec{A} &= -\mu \vec{J}, \\ \vec{B} &= \nabla \times \vec{A} = \mu_0 \vec{H}, \\ \vec{A}(\vec{r}) &= \frac{\mu}{4\pi} \int_V \ \vec{J}(\vec{r}') \frac{e^{-jk_0|\vec{r} - \vec{r}'|}}{|\vec{r} - \vec{r}'|} \ dV. \end{split}$$

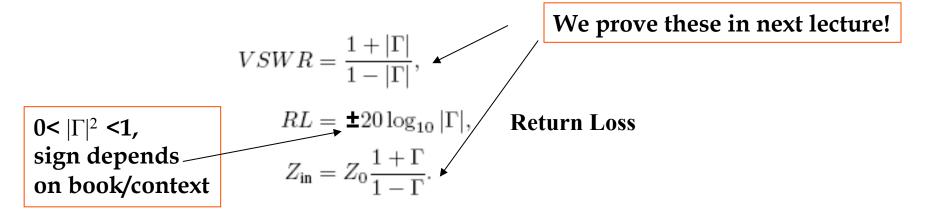
- Current distribution from Antenna geometry.
- Numerical methods.





Characteristics: Input VSWR & Impedance





- $\triangleright |\Gamma|^2$ shows the percentage of power lost due to mismatch (reflection).
- \triangleright power coupled to antenna = $(1-|\Gamma|^2)$ times the power delivered from source.
- > Typically, VSWR is less than 2:1.
- Example: VSWR = 2:1 means that 11% of delivered tx power to antenna is lost!

Characteristics: Bandwidth

- Various meanings, depending on context.
- ➤ Most common: impedance bandwidth.
- ➤ Impedance bandwidth: range of frequencies where VSWR below a threshold.
- ➤ Other definitions based on gain, efficiency, patterns etc.
- ➤ Operational bandwidth usually smaller.

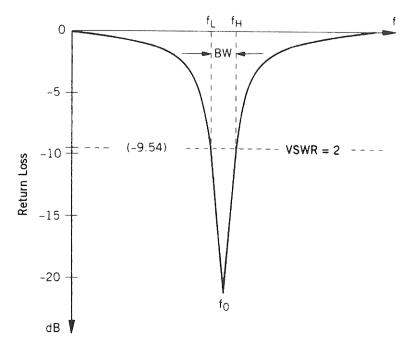
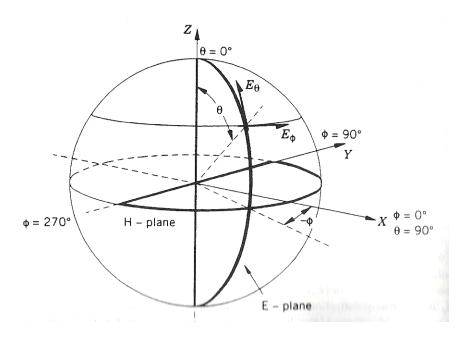


FIGURE 3.8 VSWR = 2 bandwidth [2].



Characteristics: Power Radiation Patterns

- ➤ Remember: far-field electric characteristics are independent of distance.
- ➤ Typically, plot power density (Poynting vector across a sphere, centered at the ant.)
- ➤ Simpler approach: draw electric and/or magnetic field at cut planes where the field is maximized.
- \triangleright E-plane: E_{θ} plane.
- \triangleright Cross-polarization component: E_{φ}

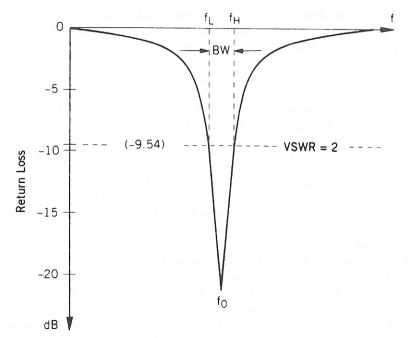
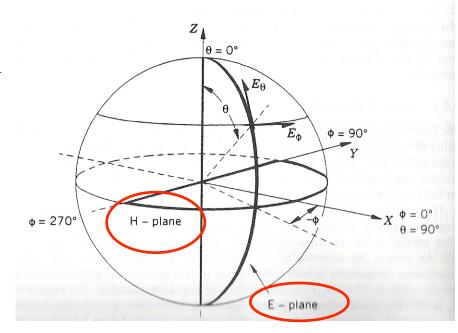
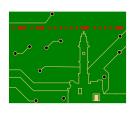
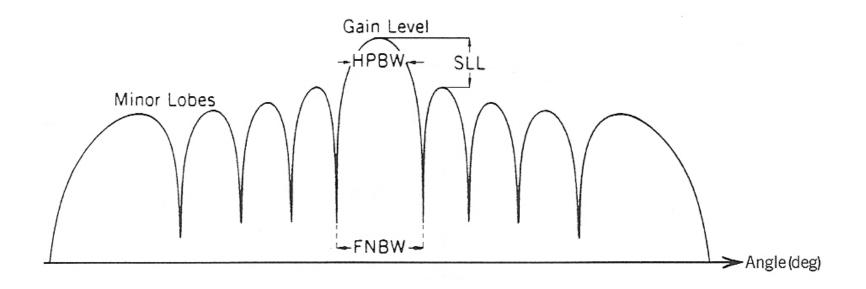


FIGURE 3.8 VSWR = 2 bandwidth [2].



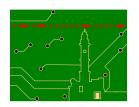
Characteristics: Half-power Beamwidth and Side Lobe Level (SLL)





- > HPBW: the range in degrees such that the radiation drops to one-half.
- > SLL: the number of decibels below the main peak of the side peaks.

Characteristics: Directivity, Gain, Efficiency



Poynting power density
$$= \vec{S}(\theta, \phi) = \frac{1}{2} \Re \left[\vec{E} \times \vec{H}^* \right],$$

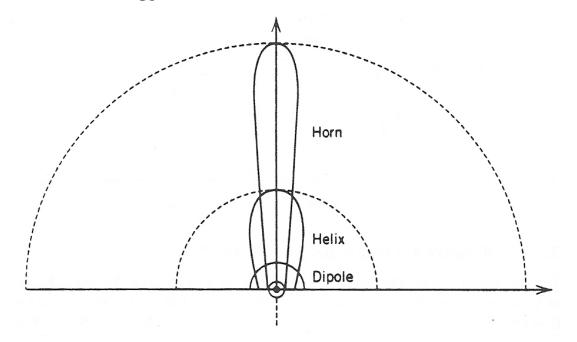
$$D(\theta, \phi) = \underbrace{P_t / 4\pi R^2}_{P_t / 4\pi R^2},$$

$$D_{\text{max}} = \frac{\max |\vec{S}(\theta, \phi)|}{P_t / 4\pi R^2}.$$
 Note: $P_t = P_{\text{rad}}$

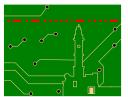
efficiency
$$\eta = \frac{P_{\text{rad}}}{P_{\text{in}}} = \frac{P_{\text{rad}}}{P_{\text{rad}} + P_{\text{loss}}}$$
. Gain $G = \eta D_{\text{max}}$.

- ➤ Gain and efficiency connect radiated power with ant input power.
- For example: G $P_t/4\pi R^2$ is radiated power density towards maximum radiation direction (Note: P_t is total input power $P_t = P_{rad} + P_{loss}$).
- ➤ Why don't we always maximize gain?

Characteristics: gain-bw tradeoff

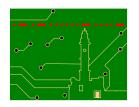


- ➤ Gain-beamwidth tradeoff: maximizing one, minimizes the other.
- ➤ Gain-bandwidth tradeoff also exists (fundamental).
- ➤ Thus, maximizing ant gain comes at the cost of reduced bandwidth and increased HPBW.



HPBW
$$\approx K_1 \frac{\lambda_0}{D}$$
, $G \approx \frac{K_2}{\theta_1 \theta_2}$

- $ightharpoonup K_1 \approx 70^{\circ}$, D ant dimension at the plane of interest.
- \succ K₂ \approx 30,000, θ_1 , θ_2 are HPBW across the two orthogonal principal planes.



- > Effective area proportional, but smaller, than physical area.
- Friis Equation is derived through A_e

$$G = \frac{4\pi}{\lambda^2} A_e$$

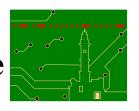
 \triangleright Polarization = direction of <u>Electric Field</u> as a function of time:

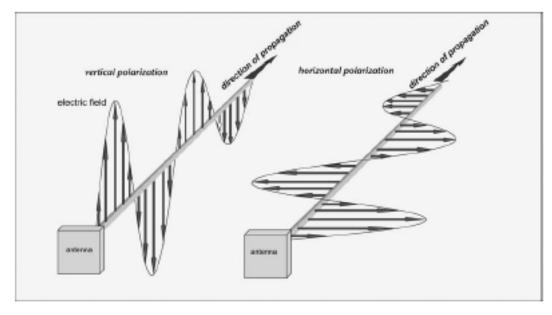
straight line: linear polarization,

circle: circular polarization (LH or RH),

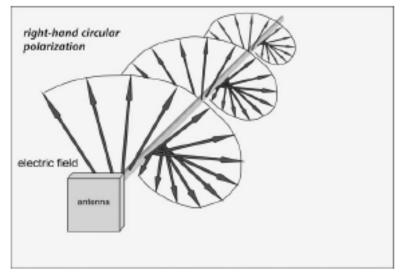
ellipse: eliptical polarization.

Polarization Example



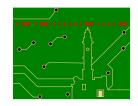


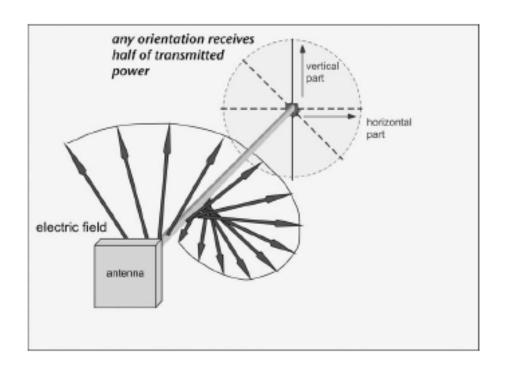
➤ linear...

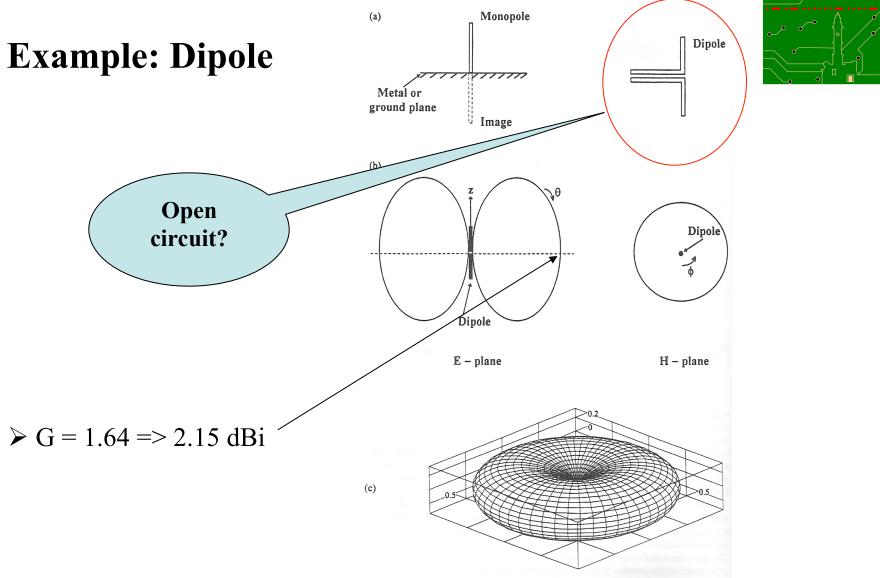


> circular...

Polarization Mismatch



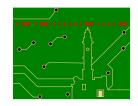


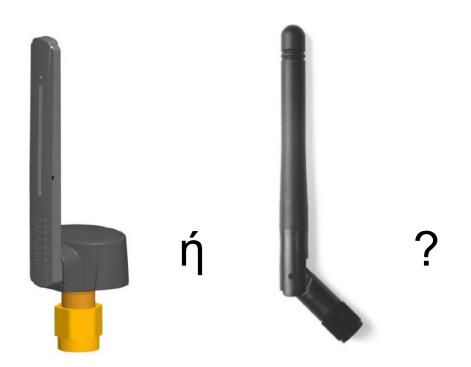


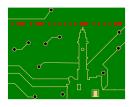
> ERP: transmitted power referenced to dipole gain.

➤ EIRP: transmitted power referenced to isotropic antenna.

Βασική ερώτηση μαθήματος







	Typical performance
Peak gain	2.2 dBi
Average gain	-1.0 dBi
Average efficiency	80%
Maximum Return Loss	-13 dB
Maximum VSWR	1.6:1

Frequency [GHz]	Gain [dBi]	Impedance [Nom]	VSWR	Polarization	Electrical Length	Radiation
2.4 – 2.5	2.0	50 Ω	≤ 2.0	Vertical	1/4, dipole	Omni

Questions?

