
14: Coding

CODING

⋆ Two Problems and Coding Solutions

⋆ Information

⋆ Huffman Coding

⋆ Linear Block Coding

Software Receiver Design Johnson/Sethares/Klein 1 / 29



14: Coding

Two Problems and Coding Solutions

1. Problem: Inefficiently coded messages squander channel capacity.

⊙ Solution: Pre-process message to improve efficiency (aka source
coding).

⊙ Example: Huffman coding

2. Problem: Messages must be resistant to bit errors.

⊙ Solution: Add bits to message with structure that can help reveal
errors in noisy recovered bits (aka channel or error-correcting coding).

⊙ Example: Linear block coding

Software Receiver Design Johnson/Sethares/Klein 2 / 29



14: Coding

Information

◮ Consider a message composed from symbols xi occuring with
probabilities p(xi) (where

∑

i p(xi) = 1).

◮ The message sequence terms are composed independently,
i.e. probability of a particular xi at time k does not depend on
message sequence terms chosen before or after time k.

◮ We will define information conveyed by a message symbol in bits.

◮ We will extend this to its mean over a symbol alphabet and call it
entropy with units of bits/symbol.

Software Receiver Design Johnson/Sethares/Klein 3 / 29



14: Coding

Information (cont’d)

◮ We will discover that: Maximum entropy (base 2 log of the number
of symbols in alphabet) for sequence drawn independently from
alphabet occurs when symbols occur equally probably.

◮ We will define a code’s efficiency as the symbol alphabet’s entropy
divided by the average number of bits per symbol used by the code.

◮ We will discover that: Maximum efficiency is achieved by a code that
conveys an average number of bits per symbol equal to the symbol
alphabet’s entropy.

Software Receiver Design Johnson/Sethares/Klein 4 / 29



14: Coding

Information (cont’d)

Definition:
Our definition of information should satisfy the following four properties:

(i) two equally probable symbols should give the same information

p(xi) = p(xj) ⇒ I(xi) = I(xj)

(ii) a less likely symbol gives more information

p(xi) < p(xj) ⇒ I(xi) > I(xj)

(iii) if there is no other choice than a particular symbol, then it conveys
no information

p(xi) = 1 ⇒ I(xi) = 0

Software Receiver Design Johnson/Sethares/Klein 5 / 29



14: Coding

Information (cont’d)

Definition (cont’d)

(iv) for two independent symbols, their information as a pair should equal
the sum of their individual information values
p(xi and xj) = p(xi)p(xj)

⇒ I(xi and xj) = I(xi) + I(xj)

There is one (and only one) possibility for a function that satisifes all four
of these properties:

I(xi) = log2

(

1

p(xi)

)

= −log2(p(xi))

which defines the information (measured in bits) conveyed by a particular
message symbol.
Example: With probabilities of occurence p(x1) = 1/2, p(x2) = 1/4, and
p(x3) = 1/4,

I(x1) = log2

(

1

p(x1)

)

= log2(2) = 1

I(x ) = I(x ) = log (4) = 2
Software Receiver Design Johnson/Sethares/Klein 6 / 29



14: Coding

Information (cont’d)

Entropy:
Extending information measure from symbol to sequence, define the
entropy (or mean information) of an alphabet with independent symbols of
various probabilities

H(x) =
N
∑

i=1

p(xi)I(xi)

=
N
∑

i=1

p(xi) log

(

1

p(xi)

)

= −
N
∑

i=1

p(xi) log(p(xi))

with units of bits/symbol.

Software Receiver Design Johnson/Sethares/Klein 7 / 29



14: Coding

Information (cont’d)

Example:

◮ 4-symbol Source A:

⊙ Symbol probabilities: p(x1) = 0.5, p(x2) = 0.25,
p(x3) = p(x4) = 0.125

⊙ Total information:

4
∑

i=1

I(xi) =

4
∑

i=1

log

(

1

p(xi)

)

= 1 + 3 + 2 + 1 = 7 bits

⊙ Entropy of the source:

H(x) =
1

2
· 1 +

1

4
· 2 +

1

8
· 3 +

1

8
· 3

= 1.75 bits/symbol.

Software Receiver Design Johnson/Sethares/Klein 8 / 29



14: Coding

Information (cont’d)

Another Example:

◮ 4-symbol Source B:

⊙ source symbol probabilities: p(xi) = 0.25 for all i
⊙ Total information: I(xi) = 2 + 2 + 2 + 2 = 8
⊙ Entropy of the source:

H(x) =
1

4
· 2 +

1

4
· 2 +

1

4
· 2 +

1

4
· 2

= 2 bits/symbol.

◮ These examples suggest that maximum entropy achieved by sources
with equally probable symbols.

Software Receiver Design Johnson/Sethares/Klein 9 / 29



14: Coding

Information (cont’d)

Maximizing Entropy:
To confirm this observation about equally probable independent symbols
maximizing entropy examine the entropy minus the base 2 log of the
number of symbols N with

∑N
i=1 p(xi) = 1

H(x)− log(N) =
N
∑

i=1

p(xi) log

(

1

p(xi)

)

− log(N)

=

N
∑

i=1

p(xi) log

(

1

p(xi)

)

−

N
∑

i=1

p(xi) log(N)

=
N
∑

i=1

p(xi)

[

log

(

1

p(xi)

)

− log(N)

]

=
N
∑

i=1

p(xi) log

(

1

Np(xi)

)

Software Receiver Design Johnson/Sethares/Klein 10 / 29



14: Coding

Information (cont’d)

Maximizing Entropy (cont’d)

◮ Changing the base of the logarithm (using
log(z) ≡ log2(z) = log2(e) ln(z) where ln(z) ≡ loge(z)) gives

H(x)− log(N) = log(e)
N
∑

i=1

p(xi) ln

(

1

Np(xi)

)

.

◮ If all symbols are equally likely, p(xi) = 1/N , then 1
Np(xi)

= 1 and

ln

(

1

Np(xi)

)

= ln(1) = 0

Hence
H(x) = log(N)

as with p(xi) = 0.25 for i = 1, 2, 3, 4 and
H(x) = −4(1/4) log2(1/4) = 2 bits/symbol which matches the
maximum of log2(N) with N = 4.

Software Receiver Design Johnson/Sethares/Klein 11 / 29



14: Coding

Information (cont’d)

Maximizing Entropy (cont’d)

◮ Conversely, if the symbols are not equally likely, then the inequality
ln(z) ≤ z − 1 (which holds for z ≥ 0) implies that

H(x)− log(N) < log(e)

N
∑

i=1

p(xi)

[

1

Np(xi)
− 1

]

= log(e)

[

N
∑

i=1

1

N
−

N
∑

i=1

p(xi)

]

= log(e)[1− 1] = 0

◮ Rearranging yields the generic bound on the entropy

H(x) ≤ log(N)

◮ This analysis establishes that maximum entropy achieved by sources
with equally probable symbols.

Software Receiver Design Johnson/Sethares/Klein 12 / 29



14: Coding

Information (cont’d)

Maximizing Efficiency

◮ Define efficiency as entropy divided by average number of bits per
symbol used in code

◮ Example: p(x1) = 0.5, p(x2) = 0.25, p(x3) = p(x4) = 0.125 ⇒
H(x) = 0.5 log2(0.5) + 0.25 log2(0.25) + 2(0.125) log2(0.125) = 1.75

◮ Code A:
x1 ↔ 11, x2 ↔ 10, x3 ↔ 01, and x4 ↔ 00

average number of bits used in code = 2 ⇒ efficiency = 1.75/2 =
87.5%

Software Receiver Design Johnson/Sethares/Klein 13 / 29



14: Coding

Information (cont’d)

Maximizing Efficiency

◮ Code B:

x1 ↔ 1, x2 ↔ 01, x3 ↔ 001, and x4 ↔ 000

average number of bits used in code
= 0.5(1) + 0.25(2) + 2(0.125)(3) = 1.75 ⇒ efficiency = 1.75/1.75 =
100%, i.e. maximum possible.

◮ Thus, we seek a procedure that takes an independent source with
unequally probable symbols and produces a maximally efficient code.

Software Receiver Design Johnson/Sethares/Klein 14 / 29



14: Coding

Huffman Coding

Procedure:

1. List the symbols in order of decreasing probability. These are the
original “nodes”.

2. Find the two nodes with the smallest probabilities, and combine them
into one new node, with probability equal to the sum of the two.
Connect the new nodes to the old ones with “branches” (lines).

3. Continue combining the pairs of nodes with the smallest probabilities.
(If there are ties, pick any of the tied symbols).

4. Place a 0 or a 1 along each branch. The path from the rightmost
node to the original symbol defines a binary list, which is the code
word for that symbol.

Software Receiver Design Johnson/Sethares/Klein 15 / 29



14: Coding

Huffman Coding (cont’d)

Example:

◮ Symbol probabilities: p(x1) = 0.5, p(x2) = 0.25,
p(x3) = p(x4) = 0.125

◮ Graph construction:

⊙ x3 and x4 combined to form node with probability = 0.25 (=
p(x3) + p(x4))

⊙ new node combined with x2 to form a new node with probability 0.5
⊙ newest node combined with x1 to form rightmost node

◮ Branch labelling: place a 1 on the top and a 0 on the bottom

Software Receiver Design Johnson/Sethares/Klein 16 / 29



14: Coding

Huffman Coding (cont’d)

Example (cont’d):

◮ Code tree:

1

1

0

1

0

0

0.25

0.5

Symbol Probability

x1 0.5

x3 0.125

x2 0.25

x4 0.125

◮ Huffman code read from the right hand side:

⊙ x1 corresponds to 1
⊙ x2 corresponds 01
⊙ x3 to 001
⊙ x4 to 000

This matches 100% efficient code B of previous example.

Software Receiver Design Johnson/Sethares/Klein 17 / 29



14: Coding

Huffman Coding (cont’d)

Another Example:

◮ Symbol probabilities: p(x1) = 0.3, p(x2) = 0.2,
p(x3) = p(x4) = 0.15, p(x5) = p(x6) = 0.1

◮ Graph construction:

⊙ x5 and x6 combined to form node I with probability 0.2
⊙ x3 and x4 combined to form node II with probability 0.3
⊙ node I combined with x2 to form node III with probability 0.4
⊙ node II combined with x1 to form node IV with probability 0.6
⊙ nodes III and IV combined to form rightmost node

◮ Branch labelling: place a 1 on the top and a 0 on the bottom

Software Receiver Design Johnson/Sethares/Klein 18 / 29



14: Coding

Huffman Coding (cont’d)

Another Example (cont’d):

◮ Code tree:

◮ Huffman code read from the right hand side:
⊙ x1 corresponds to 11
⊙ x2 corresponds 01
⊙ x3 to 101
⊙ x4 to 100
⊙ x5 to 001
⊙ x to 000

Software Receiver Design Johnson/Sethares/Klein 19 / 29



14: Coding

Huffman Coding (cont’d)

Another Example (cont’d):

◮ Symbol ends if 2nd bit is 1; otherwise ends with 3 bits.
◮ Entropy:

H(x) =
∑6

i=1 p(xi) log2

(

1
p(xi)

)

= 0.3 log2

(

1

0.3

)

+ 0.2 log2

(

1

0.2

)

+2(0.15) log2

(

1

0.15

)

+ 2(0.1) log2

(

1

0.1

)

= 2.471

◮ Average number of bits per symbol:

(0.3 + 0.2)(2) + (0.15 + 0.15 + 0.1 + 0.1)(3) = 2.5

◮ Efficiency (%):100×
entropy

average number bits per symbol

= 100

(

2.471

2.5

)

= 98.84%

Software Receiver Design Johnson/Sethares/Klein 20 / 29



14: Coding

Huffman Coding (cont’d)

Observations:

◮ Huffman procedure (always) leads to a prefix code (with start and
end immediately recognizable) because all the symbols end the same
(except for the maximal length symbol x4).

◮ Huffman procedure (always) leads to a code which has average length
very near the optimal and efficiency near maximum.

◮ Logical branching can be used in decoding the variable length
symbols of the Huffman code (see codex).

Having dealt with inefficiently coded messages that squander capacity, the
first of our two problems with coding solutions, we now turn to the second
problem of engendering resistance to bit errors due to noise.

Software Receiver Design Johnson/Sethares/Klein 21 / 29



14: Coding

Linear Block Coding

◮ With signal power kept fixed, an increase in number of levels in PAM
signal requires that distance between signal levels shrinks.

◮ As the distance between signal levels shrinks, the ratio of powers in
the total signal of the component due to signal S and that due to
noise P must increase to maintain a maximum error rate.

◮ The maximum capacity in bits per second for a channel with additive
white gaussian noise is (in bits/second)

C = B log2

(

1 +
S

P

)

where B is the channel bandwidth.

◮ Increasing bandwidth or SNR increases capacity.

◮ We seek codes that fully utilize channel capacity.

Software Receiver Design Johnson/Sethares/Klein 22 / 29



14: Coding

Linear Block Coding (cont’d)

◮ For a source producing information at R bits/second, with R < C
there exists a code that can be transmitted with arbitrarily small error.

◮ A simple, but inefficient, coding technique offering resistance to bit
errors in transmission is to repeat each bit three times. Thus, to
communicate 01, we send 000111.

◮ The decoder at the receiver uses a “majority rules” strategy for each
received triple. Thus,

000 ↔ 0 001 ↔ 0 010 ↔ 0 100 ↔ 0
101 ↔ 1 110 ↔ 1 011 ↔ 1 111 ↔ 1

◮ This table indicates that this strategy will successfully decode any
triple with no more than one error.

◮ Linear block coding offers a more efficient error-correcting code.

Software Receiver Design Johnson/Sethares/Klein 23 / 29



14: Coding

Linear Block Coding (cont’d)

◮ The ability of English text to retain its meaning despite errors in
several characters (up to ∼ 10%) is a testament to the
error-correcting possibilities with a message possessing structural
redundancy.

◮ The characters in English text occur with different probabilities

(In Wizard of Oz the letter ’e’ appears almost 10% of the time, while
’j’ occurs less than 1/10 of 1% of the time.)

and are not independent as characters influence adjacent characters.

(’u’ usually follows ’q’.)

◮ Linear block coding produces a much simpler structured redundancy
than English language syntax.

Software Receiver Design Johnson/Sethares/Klein 24 / 29



14: Coding

Linear Block Coding (cont’d)

Linear block coding procedure:

1. Collect k symbols into a vector x = {x1, x2, . . . xk}.

2. Transmit the length n code word c = xG.

3. At the receiver, the vector y is received. Calculate yHT .

4. If yHT = 0, then no errors have occurred.

5. When yHT 6= 0, errors have occurred. Look up yHT in a table of
“syndromes”, which contains a list of all possible received values and
the most likely symbol to have been transmitted, given the error that
occurred.

Note: Arithmetic used throughout is binary, i.e. modulo 2, so 0+0=0,
0+1=1, 1+0=1, 1+1=0 and 0·0=0, 0·1=0, 1·0=0, 1·1=1.

Software Receiver Design Johnson/Sethares/Klein 25 / 29



14: Coding

Linear Block Coding (cont’d)

(5, 2) binary code:

◮ Generator matrix

G =

[

1 0 1 0 1
0 1 0 1 1

]

◮ Parity check matrix

HT =













1 0 1
0 1 1
1 0 0
0 1 0
0 0 1













Software Receiver Design Johnson/Sethares/Klein 26 / 29



14: Coding

Linear Block Coding (cont’d)

(5, 2) binary code (cont’d):

◮ This code bundles the bits into pairs, and the four corresponding code
words are:

x1 = 00 ↔ c1 = x1G = 00000
x2 = 01 ↔ c2 = x2G = 01011
x3 = 10 ↔ c3 = x3G = 10101
x4 = 11 ↔ c4 = x4G = 11110

◮ Accompanying syndrome table

Syndrome eHT Most likely error e
000 00000
001 00001
010 00010
011 01000
100 00100
101 10000
110 11000
111 10010

Software Receiver Design Johnson/Sethares/Klein 27 / 29



14: Coding

Linear Block Coding (cont’d)

(5, 2) binary code (cont’d):

◮ For defined H
c1H

T = c2H
T = c3H

T = c4H
T

so when received signal vector y is one of the code words yHT = 0.

◮ When yHT 6= 0, y 6= ci for any i.

◮ Define e = y − c where c is the transmitted code word.

◮ Since cHT = 0,

yHT = (c+ e)HT = cHT + eHT = eHT

◮ A nonzero eHT is associated in the syndrome table with the most
likely e which can be added to y to recover the most likely c.

Software Receiver Design Johnson/Sethares/Klein 28 / 29



14: Coding

Linear Block Coding (cont’d)

(5, 2) binary code (cont’d):

◮ For example, consider communication of symbol x2 corresponding to
01, which is accomplished by transmitting the code word c2 = 01011.
An error in transmission produces y = 11011. yHT = eHT = 101 →
most likely e = 10000 → e+ y = 10000 + 11011 = 01011, which
correctly corresponds to c2.

◮ As another example, again consider communication of symbol
x2 = 01 by transmitting the code word c2 = 01011. Two errors in
transmission produce y = 00111. yHT = eHT = 111 → most likely
e = 10010 → e+ y = 10010 + 00111 = 10101, which incorrectly
corresponds to c3.

NEXT... We enter the integration layer and present a receiver design
methodology and the specifications of a challenging design project.

Software Receiver Design Johnson/Sethares/Klein 29 / 29


