
13: Linear Equalization

LINEAR EQUALIZATION

⋆ Multipath and Other Interference

⋆ Trained Least-Squares Linear Equalization

⋆ Trained Adaptive Least-Mean-Square Equalization

⋆ Blind Adaptive Decision-Directed Equalization

⋆ Blind Adaptive Dispersion Minimizing Equalization

adaptive components
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13: Linear Equalization

Multipath and Other Interference

◮ Assume up and down conversion and carrier and clock recovery
(including matched filtering and downsampling) all executed
transparently.

◮ Impairment of interest is multipath interference (linear filtering by
analog channel and receiver front-end preceding equalizer) and other
additive interference (broadband noise and narrowband interferers).
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13: Linear Equalization

Multipath ... Interference (cont’d)

◮ FIR channel model:

y(kT ) = a1u(kT ) + a2u((k − 1)T )

+ . . .+ anu((k − n)T ) + η(kT )

where η(kT ) is sample of other interference.

◮ Order n of discrete-time FIR channel model dependent on physical
delay spread of channel.

◮ For 4 µsec delay spread by “physical” channel:

⊙ T = 0.04 µsec → 25 Msymbols/sec → n = 100
⊙ T = 0.4 µsec → 2.5 Msymbols/sec → n = 10
⊙ T = 4 µsec → 0.25 Msymbols/sec → n = 1
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13: Linear Equalization

Multipath ... Interference (cont’d)

◮ Multipath FIR model coefficients depend on actual baud-timing
choice of clock recovery algorithm, which need not match timing in
non-ISI situation.

◮ Example: Two-ray analog channel c(t) = p(t) + 0.6p(t−∆) with
∆ = 0.7T
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13: Linear Equalization

Trained Least-Squares Linear Equalization

◮ Objective: Choose impulse response f of equalizer so y[k] ≈ s[k − δ]
(so e ≈ 0) for some δ.
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13: Linear Equalization

Trained ... Equalization (cont’d)

◮ Write equalizer output for k = n+ 1 as inner product

y[n+ 1] = [r[n+ 1], r[n], ..., r[1]]
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◮ Similarly, for k = n+ 2
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13: Linear Equalization

Trained ... Equalization (cont’d)

Concatenating these equations for k = n+ 1 to p















y[n+ 1]
y[n+ 2]
y[n+ 3]

...
y[p]















=















r[n+ 1] r[n] ... r[1]
r[n+ 2] r[n+ 1] ... r[2]
r[n+ 3] r[n+ 2] ... r[3]

...
...

...
r[p] r[p− 1] ... r[p− n]

























f0
f1
...
fn











or with appropriate definitions

Y = RF

where R with its diagonal stripes of repeated values is a Toeplitz matrix.
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13: Linear Equalization

Trained ... Equalization (cont’d)

Delayed source recovery error:

e[k] = s[k − δ]− y[k]

Delayed source vector:
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











s[n+ 1− δ]
s[n+ 2− δ]
s[n+ 3− δ]

...
s[p− δ]















Error vector:

E =















e[n+ 1]
e[n+ 2]
e[n+ 3]

...
e[p]















= S − Y = S −RF
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13: Linear Equalization

Trained ... Equalization (cont’d)

Average squared delayed source recovery error:

J̄ =

(

1

p− n

) p
∑

i=n+1

e2[i]

Summed squared error:

J =
∑p

i=n+1 e
2[i]

= ETE

= (S −RF )T (S −RF )

= STS − (RF )TS − STRF + (RF )TRF

Because J is a scalar, (RF )TS and STRF are scalars and

(RF )TS = ((RF )TS)T = ST ((RF )T )T = STRF

so
J = STS − 2STRF + (RF )TRF
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13: Linear Equalization

Trained ... Equalization (cont’d)

◮ Define

Ψ , [F − (RTR)−1RTS]T (RTR) · [F − (RTR)−1RTS]

= F T (RTR)F − STRF − F TRTS + STR(RTR)−1RTS

◮ Rewrite J as

J = Ψ+ STS − STR(RTR)−1RTS

= Ψ+ ST [I −R(RTR)−1RT ]S

◮ Because the term ST [I −R(RTR)−1RT ]S is not a function of F , the
minimum of J by choice of F occurs at the F that minimizes Ψ, i.e.

F ∗ = (RTR)−1RTS

assuming (RTR)−1 exists.
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13: Linear Equalization

Trained ... Equalization (cont’d)

◮ The remaining term in J when F = F ∗ is the minimum achievable
(summed squared delayed source recovery error) cost for the
associated δ

Jmin = ST [I −R(RTR)−1RT ]S

◮ Example (using LSequalizer): Indicating importance of appropriate
delay δ selection

⊙ Source: binary (±1)
⊙ T-spaced channel impulse response:

{0.5, 1, −0.6} for k = 0, 1, 2
⊙ Equalizer length: n+ 1 = 4
⊙ Data record length: p = 1000
⊙ Additive interferers: none
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13: Linear Equalization

Trained ... Equalization (cont’d)

◮ Example (cont’d)

⊙ Results:
δ Jmin F ∗

0 832 {0.33, 0.027, 0.070, 0.01}
1 134 {0.66, 0.36, 0.16, 0.08}
2 30 {−0.28, 0.65, 0.30, 0.14}
3 45 {0.1, −0.27, 0.64, 0.3}

⊙ Smallest Jmin for δ = 2
⊙ All δ except δ = 0 result in open eye and no decision errors.
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13: Linear Equalization

Trained ... Equalization (cont’d)

Another Example:

◮ Equalizer: y[k] = f0r[k] + f1r[k − 1]

◮ Received signal data set:

{r[k]} = {r[1], r[2], r[3], r[4], r[5]}

◮ Source signal data set:

{s[k]} = {s[1], s[2], s[3], s[4], s[5]}

◮ Zero-delay objective: y[k] ∼ s[k]. The largest collection of equations
available from dataset is
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13: Linear Equalization

Trained ... Equalization (cont’d)

Another Example (cont’d):

◮ δ = 1 objective: y[k] ∼ s[k − 1]. The largest collection of equations
available from dataset is
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13: Linear Equalization

Trained ... Equalization (cont’d)

Another Example (cont’d):
Largest common set of equations for testing delays from 0 to n+ 1:





s[3] s[2] s[1]
s[4] s[3] s[2]
s[5] s[4] s[3]


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r[3] r[2]
r[4] r[3]
r[5] r[4]





[

f00 f01 f02
f10 f11 f12

]

where fij corresponds to i for index of delay associated with coefficient in
equalizer FIR and j for desired delay in channel-equalizer combination.
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13: Linear Equalization

Trained ... Equalization (cont’d)

Another Example (cont’d):
All together now... S̄ ∼ R̄F̄ with

S̄ =
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13: Linear Equalization

Trained ... Equalization (cont’d)

Another Example (cont’d):

◮ In our example, n = 1, α = 2, and p = 5

◮ Summed squared delayed source recovery error minimized for delays
from zero to α by columns of

F̄ ∗ = (R̄T R̄)−1R̄T S̄

◮ Minimum cost for a particular delay δ associated with (δ + 1)th (or
ℓth) column of F̄ ∗:

Jmin,ℓ = S̄T
ℓ [I − R̄(R̄T R̄)−1R̄T ]S̄ℓ

where S̄∗

ℓ is ℓth columns of S̄∗.

◮ Matrix with diagonal as minimum costs for various delays:

Φ = S̄T [I − R̄(R̄T R̄)−1R̄T ]S̄
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13: Linear Equalization

Trained ... Equalization (cont’d)

The steps of the linear FIR equalizer design strategy are:

1. Select the order n for the FIR equalizer.

2. Select maximum of candidate delays α (> n).

3. Utilize set of p training signal samples {s[1], s[2], ..., s[p]} with
p > n+ α.

4. Obtain corresponding set of p received signal samples
{r[1], r[2], ..., r[p]}.

5. Compose S̄.

6. Compose R̄.

7. Check if R̄T R̄ has poor conditioning induced by any (near) zero
eigenvalues.

8. Compute F̄ ∗.

9. Compute Φ = S̄T [S̄ − R̄F̄ ∗].
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13: Linear Equalization

Trained ... Equalization (cont’d)

Equalizer design strategy (cont’d):

10. Find the minimum value on the diagonal of Φ. This index is δ + 1.
The associated diagonal element of Φ is the minimum achievable
summed squared delayed source recovery error

∑

i e
2[i] over the

available data record.

11. Extract the (δ + 1)th column of the previously computed F̄ ∗. This is
the impulse response of the optimum equalizer.

12. Test the design. Test it on synthetic data, and then on measured
data (if available). If inadequate, repeat design, perhaps increasing n
or twiddling some other designer-selected quantity.
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13: Linear Equalization

Trained ... Equalization (cont’d)

Complex Signals:

◮ For modulations such as QAM, the signals (and parameters) are
effectively complex valued.

◮ For a complex error e[k] = eR[k] + jeI [k] where j =
√
−1, consider

e[k]e∗[k] where ∗ superscript indicates complex conjugation.

◮ The cost
e[k]e∗[k] = e2R[k]− jeR[k]eI [k]

+jeR[k]eI [k]− j2e2I [k]

= e2R[k] + e2I [k]

is desirably nonnegative.

◮ Optimal equalizer to minimize
∑

k e[k]e
∗[k] is

F ∗ = (RHR)−1RHS

where superscript H denotes transposition and complex conjugation.
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13: Linear Equalization

Trained ... Equalization (cont’d)

Fractionally-Spaced Equalizer:

◮ For an equalizer with an input sampled M times per symbol period,
we wish to minimize the square of e only at the the baud times,
i.e. every M th sample (with synchronized sampler).

◮ Thus, only every M th e in E matters, and the underlying equations
of interest are the rows of E = S −RF left after removing all but
every M th one.

◮ The remaining matrix equation is solved, which can admit a perfect
solution if the row-decimated R has been reduced to a square matrix.
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13: Linear Equalization

Trained Adaptive Least-Mean-Square (LMS) Equalization

We choose to minimize

avg{e2[k]} = 1
N

∑k0+N−1
k=k0

e2[k]

with e[k] = s[k − δ]−∑n
i=0 fir[k − i] using a gradient descent scheme

fi[k + 1] = fi[k]− µ̄
∂(avg{e2[k]})

∂fi
|f=f [k]

With differentiation and average approximately commutable (see App. G)

fi[k + 1] ≈ fi[k]− µ̄ · avg
{

∂e2[k]

∂fi
|f=f [k]

}

Dropping the “outer” average produces LMS

fi[k + 1] = fi[k]− 2µ̄

(

e[k]
∂e[k]

∂fi

)

|f=f [k]

= fi[k] + µ(s[k − δ]− y[k])r[k − i]

with y[k] =
∑n

j=0 fj [k]r[k − j].
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13: Linear Equalization

Trained Adaptive Least-Mean-Square (LMS) Equalization
(cont’d)

With the definition of the FIR equalizer output

y[k] =
n
∑

j=0

fj [k]r[k − j]

in

f [k] Sign[·]

r[k] y[k]

e[k] s[k]

training

signal

Equalizer

Adaptive

algorithm

Performance

evaluation

Decision

device

Sampled

received

signal

the trained approximate gradient descent adaptation algorithm LMS for
the linear equalizer is

fi[k + 1] = fi[k] + µ(s[k − δ]− y[k])r[k − i]
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13: Linear Equalization

Blind Adaptive Decision-Directed Equalization

We choose to minimize

avg{(Q(
n
∑

j=0

fjr[k − j])−
n
∑

j=0

fjr[k − j])2}

=
1

N

k0+N−1
∑

k=k0

(Q(

n
∑

j=0

fjr[k − j])−
n
∑

j=0

fjr[k − j])2

using a gradient descent scheme

fi[k + 1] = fi[k]− µ̄
∂

∂fi



avg{(Q(

n
∑

j=0

fjr[k − j])

−
n
∑

j=0

fjr[k − j])2}



 |f=f [k]
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13: Linear Equalization

Blind Adaptive Decision-Directed Equalization (cont’d)

Commute average and partial derivative, drop “outer” average, and
presume ∂(Q(

∑n
j=0 fjr[k − j]))/∂fi = 0 to produce

fi[k + 1] = fi[k]− 2µ̄{(Q(
n
∑

j=0

fjr[k − j])

−
n
∑

j=0

fjr[k − j])
∂(−∑n

j=0 fjr[k − j])

∂fi
}|f=f [k]

= fi[k]− 2µ̄



Q(
n
∑

j=0

fj [k]r[k − j])

−
n
∑

j=0

fj [k]r[k − j]



 (−r[k − i])
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13: Linear Equalization

Blind ... Equalization (cont’d)

With the definition of

y[k] =
∑n

j=0 fj [k]r[k − j]

in

f [k] Sign[·]

r[k] y[k]

e[k]

Equalizer

Adaptive

algorithm

Performance

evaluation

Decision

device

Sampled

received

signal

the decision-directed approximate gradient descent adaptation algorithm
for the linear FIR equalizer is

fi[k] = fi[k] + µ(Q(y[k])− y[k])r[k − i]

◮ Relative to trained adaptation via LMS, the decision device output
just replaces the training signal.
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13: Linear Equalization

Blind Adaptive Dispersion-Minimizing Equalization

We choose to minimize

avg{(1− (
n
∑

j=0

fjr[k − j])2)2} =
1

N

k0+N−1
∑

k=k0

(1− (
n
∑

j=0

fjr[k − j])2)2

using a gradient descent scheme

fi[k + 1] = fi[k]− µ̄
∂
(

avg{(1− (
∑n

j=0 fjr[k − j])2)2}
)

∂fi
|f=f [k]

Commuting average and differentiation and dropping “outer” average
produces

fi[k + 1] = fi[k] + 2µ̄{(1− (
n
∑

j=0

fjr[k − j])2)

·
∂(
∑n

j=0 fjr[k − j])2

∂fi
}|f=f [k]
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13: Linear Equalization

Blind ... Equalization (cont’d)

Evaluating derivative produces

fi[k + 1] = fi[k] + µ(1− (
n
∑

j=0

fj [k]r[k − j])2) · (
n
∑

j=0

fj [k]r[k − j])r[k − i]

where
n
∑

j=0

fj [k]r[k − j] = y[k]

so
fi[k + 1] = fi[k] + µ(1− y2[k])y[k]r[k − i]

In comparison to LMS the prediction error s[k − δ]− y[k] has been
effectively replaced by (1− y2[k])y[k].
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13: Linear Equalization

Blind ... Equalization (cont’d)

With the definition of

y[k] =
∑n

j=0 fj [k]r[k − j]

in

r[k] y[k]

e[k]

Equalizer

Adaptive

algorithm

Sampled

received


signal

X2

g

y2[k]

Performance evaluation

12

the dispersion-minimizing approximate gradient descent adaptation
algorithm for the linear FIR equalizer is

fi[k + 1] = fi[k] + µ(1− y2[k])y[k]r[k − i]

◮ The adaptive scheme is labelled as blind (rather than trained) due to
the creation of the correction term without a training signal.
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13: Linear Equalization

Example (using dae)

◮ Source: binary (±1)

◮ Channel:

⊙ Zero: {1 .9 .81 .73 .64 .55 .46 .37 .28}/4.138
⊙ One: {1 1 1 0.2 -0.4 2 -1}/8.2
⊙ Two: {-0.2 .1 .3 1 1.2 .4 -.3 -.2 .3 .1 -.1}/2.98

◮ Sinusoidal interferer frequency: 1.4 radians/sample

◮ Some broadband noise present

◮ Equalizer length: 33
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13: Linear Equalization

Example (cont’d)

Trained LS for channel zero:
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13: Linear Equalization

Example (cont’d)

Trained LS for channel one:
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13: Linear Equalization

Example (cont’d)

Trained LS for channel two:
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13: Linear Equalization

Example (cont’d)

Trained LMS for channel zero:
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13: Linear Equalization

Example (cont’d)

Decision-directed for channel zero:

25

210

215

0

0 1 2 3 4

5

Normalized frequency

1

0

21

22

23

2

0 1000 2000 3000 4000

3

Iterations

d
B

A
d

a
p

ti
v
e
 e

q
u

a
li

ze
r 

o
u

tp
u

t

1

0.5

0

1.5

0 1000 2000 3000 4000

2

Iterations

Combined magnitude response

100

1021

0 1000 2000 3000 4000

101

Iterations

S
q

u
a
re

d
 p

re
d

ic
ti

o
n

 e
rr

o
r

S
u

m
m

e
d

 s
q

u
a
re

d
 p

a
ra

m
e
te

r 
e
rr

o
r

Software Receiver Design Johnson/Sethares/Klein 35 / 36



13: Linear Equalization

Example (cont’d)

Dispersion minimization for channel zero:
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