
7: Digital Filtering and the DFT

DIGITAL FILTERING
AND THE DFT

⋆ Digital Linear Filters in the Receiver

⋆ Discrete-time Linear System Tidbits

⋆ DFT Tidbits

⋆ Filter Design Tidbits

idealized system
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7: Digital Filtering and the DFT

Digital Linear Filters in the Receiver
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There are a number of places in our PAM communication system receiver
after the sampler where a digital linear filter is needed, including:

◮ lowpass filter in digital downconversion
◮ pulse-matched filter
◮ timing interpolator
◮ equalizer
◮ correlator for decoder frame synchronization
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7: Digital Filtering and the DFT

Discrete-time Linear Systems Tidbits

◮ Discrete-time impulse:

δ[k] =

{

1 k = 0
0 k 6= 0

◮ Signal as weighted sum of delayed impulses:

{w[k]} = {1, 2, −1, ...}

w[k] = δ[k] + 2δ[k − 1]− δ[k − 2] . . .

◮ Discrete-time linear system response:
◮ input: w[k] = δ[k] ⇒ output: y[k] = h[k]
◮ input: w[k] = δ[k] + 2δ[k − 1] = w[0]δ[k] + w[1]δ[k − 1]

⇒ output:y[k] = w[0]h[k] + w[1]h[k − 1]
◮ input: w[k] =

∑

∞

j=−∞
w[j] δ[k − j]

⇒ output:y[k] =
∑

∞

j=−∞
w[j] h[k − j] ≡ w[k] ∗ h[k]
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7: Digital Filtering and the DFT

DFT Tidbits

◮ DFT: Given

{w[k]} = {w[0], w[1], ..., w[N − 1]}

we define

W [n] = DFT ({w[k]})

=
N−1
∑

k=0

w[k]e−j(2π/N)nk n = 0, 1, 2, ..., N − 1

◮ IDFT: Given

{W [n]} = {W [0], W [1], ..., W [N − 1]}

we define

w[k] = IDFT ({W [n]})

=
1

N

N−1
∑

n=0

W [n]ej(2π/N)nk k = 0, 1, 2, ..., N − 1

Software Receiver Design Johnson/Sethares/Klein 4 / 17



7: Digital Filtering and the DFT

DFT Tidbits (cont’d)

Define
w = [w[0] w[1] w[2] ... w[N − 1]]T
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W = [W [0] W [1] W [2] ... W [N − 1]]T

Then, for the IDFT

w =

(

1

N

)

M−1
W

and for the DFT
W = NMw
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7: Digital Filtering and the DFT

DFT Tidbits (cont’d)

Nw = W [0]
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ej2(N−1)π/N

ej4(N−1)π/N

...
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= W [0] C0 +W [1] C1 + . . .+W [N − 1] CN−1

=
N−1
∑

n=0

W [n]Cn

w is a linear combination of the columns Cn.
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7: Digital Filtering and the DFT

DFT Tidbits (cont’d)

◮ The all ones C0 is a vector of samples of a zero frequency sinusoid.

◮ The entries of C1 maintain the same (unit) magnitude but have an
angle that increases from 0 to 2π(N − 1)/N , i.e. traversing one
period over the data record length.

◮ The entries of C2 traverse the full unit circle twice in the positive
(counterclockwise) direction.

◮ The DFT re-expresses the time vector as a linear combination of
sinusoids with periods equal to the data record length, half this length,
one-third this length, and so forth up to (1/(N − 1))th of this length.
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7: Digital Filtering and the DFT

DFT Tidbits (cont’d)

The key factors in a DFT based frequency analysis are:

◮ The sampling interval Ts is the time resolution, the shortest time over
which any event can be observed.

◮ The sampling rate is fs =
1
Ts
. As the sample rate increases, the time

resolution decreases.

◮ The total time is T = NTs where N is the number of samples in the
analysis.

◮ The frequency resolution is 1
T = 1

NTs
= fs

N . Sinusoids closer together
(in frequency) than this value are indistinguishable.

◮ As the time resolution increases, the frequency resolution decreases,
and vice versa.
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7: Digital Filtering and the DFT

DFT Tidbits (cont’d)

Example: In specgong.m

◮ sampling interval: Ts =
1

44100
◮ number of samples: N = 216

◮ total time: NTs = 1.48 seconds
◮ frequency resolution: 1

NTs
= 0.67 Hz
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7: Digital Filtering and the DFT

Filter Design Tidbits

Types:
◮ lowpass filter
◮ high pass filter
◮ bandpass filter
◮ bandstop (notch) filter

Bandpass filter spectra specification:

uH( f )u

H( f )
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Software Receiver Design Johnson/Sethares/Klein 10 / 17



7: Digital Filtering and the DFT

Filter Design Tidbits (cont’d)

From help firpm:
FIRPM performs Parks-McClellan optimal equiripple FIR filter design.
i.e. a linear phase (real, symmetric coefficients) FIR filter which has the
best approximation to the desired frequency response in the minimax sense.
b = firpm(fl,fbe,damps)

◮ b is the output vector containing the impulse response of the designed
filter.

◮ fl is (one less than) the number of terms in b.

⊙ fl ↑ ⇒ fit to design specs improves
⊙ fl ↑ ⇒ computational costs increase
⊙ fl ↑ ⇒ throughput delay increases
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7: Digital Filtering and the DFT

Filter Design Tidbits (cont’d)

◮ fbe is a vector of frequency band edge values as a fraction of the
prevailing Nyquist frequency. For a basic bandpass filter:

◮ bottom of stopband (presumably zero)
◮ top edge of lower stopband (which is also the lower edge of the lower

transition band)
◮ lower edge of passband
◮ upper edge of passband
◮ lower edge of upper stopband
◮ upper edge of upper stopband (generally the last value will be 1).

◮ damps is the vector of desired amplitudes of the frequency response at
each band edge.
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7: Digital Filtering and the DFT

Filter Design Tidbits (cont’d)

From bandex with
◮ fbe=[0 0.24 0.26 0.74 0.76 1]
◮ damps=[0 0 1 1 0 0]
◮ fl=30

b=firpm(fl,fbe,damps); freqz(b) produces
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7: Digital Filtering and the DFT

Filter Design Tidbits (cont’d)

To demonstrate criteria fit impact of filter length, repeat preceding
example with fl halved and doubled.

◮ fl=15
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7: Digital Filtering and the DFT

Filter Design Tidbits (cont’d)

◮ fl=60
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Note improved fit to design specifications with increase in filter length
(fl).
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7: Digital Filtering and the DFT

Filter Design Tidbits (cont’d)

Adding an in-band notch with

◮ fbe=[0 0.24 0.26 0.59 0.595 0.605 0.61 0.74 0.76 1]

◮ damps=[0 0 1 1 0 0 1 1 0 0]

◮ fl=60
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Desired notch (at normalized frequency = 0.6) is barely perceptible.
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7: Digital Filtering and the DFT

Filter Design Tidbits (cont’d)

◮ fl=120
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Note improved fit to design specifications with increase in filter length
(fl). Desired notch (at normalized frequency = 0.6) is quite pronounced.
NEXT... We discuss the conversion of bits to symbols to pulse-amplitude
modulated signals and the reversal with correlation used to locate the
frame break.
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