Introduction to
Python Programming

https://www.accelebrate.com
(877) 849-1850 <« info@accelebrate.com

Customized Technical Training

Accelebrate. %f

ACCELERATED LEARNING, CELEBRATED RESULTS®

On-Site, Customized Private Training

Don’t settle for a one-size-fits-all class! Let Accelebrate

tailor a private class to your group’s goals and

experience. Classes can be delivered at your site or online
(or a combination of both) worldwide. Visit our web site at

https://www.accelebrate.com and contact us at
sales@accelebrate.com for details.

Public Online Training

Need to train just 1-3 people? Attend one of our regularly
scheduled, live, instructor-led public online classes. Class
sizes are small (typically 3-6 attendees) and you receive just
as much hands-on time and individual attention from your
instructor as our private classes. For course dates, times,

outlines, pricing, and registration, visit

https://www.accelebrate.com/public-training-schedule.

Newsletter

Want to find out about our latest class offerings?
Subscribe to our newsletter
https://www.accelebrate.com/newsletter.

Blog
Get insights and tutorials from our instructors and

staff! Visit our blog, https://www.accelebrate.com/blog
and join the discussion threads and get feedback from our

instructors!

Learning Resources

Get access to learning guides, tutorials, and past issues of

our newsletter at the Accelebrate library,
https://www.accelebrate.com/library.

Call us for a training quote!

877 849 1850

Like us on Facebook + Follow us on Twitter + Watch us on YouTube

Accelebrate, Inc. was founded in 2002 with
the goal of delivering private training that
rapidly achieves participants’ goals. Each
year, our experienced instructors deliver
hundreds of classes online and at client sites
all over the US, Canada, and abroad. We
pride ourselves on our instructors’ real-world
experience and ability to adapt the training
to your team and their objectives. We offer

a wide range of topics, including:

Angular, React, and Vue

JavaScript

Data Science using R, Python, & Julia
Excel Power Query & Power Bl
Tableau

.NET & VBA programming
SharePoint & Microsoft 365

DevOps

iOS & Android Development
PostgreSQL, Oracle, and SQL Server
Java, Spring, and Groovy

Agile

Web/Application Server Admin
HTMLS & Mobile Web Development
AWS & Azure

Adobe & Articulate software

Docker, Kubernetes, Ansible, & Git
IT leadership & Project Management
AND MORE (see back)

"It’s not often that everything goes
according to plan and you feel you really
got full value for money spent, but in this
case, I feel the investment in the Articulate
training has already paid off in terms of
employee confidence and readiness.”

— Paul, St John’s University

Visit our website for a complete list of courses!

Adobe & Articulate

Adobe Captivate

Adobe Presenter

Articulate Storyline / Studio
Camtasia

RoboHelp

AWS, Azure, & Cloud
AWS

Azure

Cloud Computing
Google Cloud
OpenStack

Big Data
Alteryx
Apache Spark
Teradata
Snowflake SQL

Data Science and RPA
Blue Prism

Django

Julia

Machine Learning
MATLAB

Python

R Programming
Tableau

UiPath

Database & Reporting
BusinessObjects
Crystal Reports

Excel Power Query
MongoDB

MySQL

NoSQL Databases
Oracle

Oracle APEX

Power BI

PivotTable and PowerPivot

PostgreSQL
SQL Server
Vertica Architecture & SQL

DevOps, CI/CD & Agile
Agile

Ansible

Chef

Diversity, Equity, Inclusion
Docker

Git

Gradle Build System
Jenkins

Jira & Confluence
Kubernetes

Linux

Microservices

Red Hat

Software Design

Java

Apache Maven
Apache Tomcat
Groovy and Grails
Hibernate

Java & Web App Security
JavaFX

JBoss

Oracle Weblogic
Scala

Selenium & Cucumber
Spring Boot

Spring Framework

JS, HTMLS5, & Mobile
Angular

Apache Cordova

CSs

D3.js

HTML5

i0S/Swift Development
JavaScript

MEAN Stack

Mobile Web Development
Node.js & Express

React & Redux

Svelte

Swift

Xamarin

Vue

Microsoft & .NET

.NET Core

ASP.NET

Azure DevOps

C#

Design Patterns

Entity Framework Core

1S

Microsoft Dynamics CRM
Microsoft Exchange Server
Microsoft 365

Microsoft Power Platform
Microsoft Project
Microsoft SQL Server
Microsoft System Center
Microsoft Windows Server
PowerPivot

PowerShell

VBA

Visual C++/CLI

Web API

Other

C++

Go Programming

IT Leadership

ITIL

Project Management
Regular Expressions
Ruby on Rails

Rust

Salesforce

XML

Security

.NET Web App Security

C and C++ Secure Coding
CH & Web App Security
Linux Security Admin
Python Security

Secure Coding for Web Dev
Spring Security

SharePoint

Power Automate & Flow
SharePoint Administrator
SharePoint Developer
SharePoint End User
SharePoint Online
SharePoint Site Owner

SQL Server

Azure SQL Data Warehouse
Business Intelligence
Performance Tuning

SQL Server Administration
SQL Server Development
SSAS, SSIS, SSRS
Transact-SQL

Teleconferencing Tools
Adobe Connect
GoToMeeting
Microsoft Teams
WebEx

Zoom

Web/Application Server
Apache httpd

Apache Tomcat

s

JBoss

Nginx

Oracle Weblogic

Visit www.accelebrate.com/newsletter to sign up and receive our newsletters
with information about new courses, free webinars, tutorials, and blog articles.

Call us for a training quote!

877 849 1850 (Us/Canada) or +1 678 648 3133

Introduction to Python

John Strickler

Version 1.0, November 2021

Table of Contents

About this course

Welcome!

Classroom etiquette
Course Outline

Student files

Extracting the student files
Examples

Lab Exercises

Appendices

Chapter 1: Getting Started

Using variables

Keywords and Builtins
Variable typing

Strings

Single-delimited string literals
Triple-delimited string literals
Raw string literals

Unicode characters

String operators and methods
String Methods

Numeric literals

Math operators and expressions

Converting among types
Writing to the screen
String Formatting

Legacy String Formatting
Command line parameters

Reading from the keyboard

Chapter 2: Flow Control

About flow control

What’s with the white space?
if and elif

Conditional Expressions
Relational Operators
Boolean operators

while loops

© 00 00 J O Ul = W DN =

U U1 g o bR R R R R R WW W WNDDN NN R R R R R R, R,
BN O ©W 00 N O U R, O NN R 0 W R 0N U W R o

Alternate ways to exit a loop 55

Chapter 3: Errors and Exception Handling 59
Syntax errors 60
Exceptions 61
Handling exceptions with try 62
Handling multiple exceptions 63
Handling generic exceptions 64
Ignoring exceptions 65
Using else 66
Cleaning up with finally 68

Chapter 4: Array Types 75
About Array Types 76
Lists 78
Indexing and slicing 81
Iterating through a sequence 85
Tuples 87
Iterable Unpacking 89
Nested sequences 92
Operators and keywords for sequences 95
Functions for all sequences 98
Using enumerate() 101
The range() function 104
List comprehensions 107
Generator Expressions 110

Chapter 5: Working with Files 117
Text file I/O 118
Opening a text file 119
The with block 120
Reading a text file 121
Writing to a text file 127

Chapter 6: Dictionaries and Sets 131
About dictionaries 132
When to use dictionaries? 133
Creating dictionaries 134
Getting dictionary values 138
Iterating through a dictionary 141
Reading file data into a dictionary 143

Counting with dictionaries 145

About sets 147

Creating Sets 148
Working with sets 149
Chapter 7: Functions 155
Defining a function 156
Returning values 159
Function parameters 160
Variable scope 168
Chapter 8: Sorting 177
Sorting Overview 178
The sorted() function 179
Custom sort keys 180
Lambda functions 185
Sorting nested data 188
Sorting dictionaries 191
Sorting in reverse 193
Sorting lists in place 195
Chapter 9: Regular Expressions 197
Regular Expressions 198
RE Syntax Overview 199
Finding matches 201
RE Objects 204
Compilation Flags 207
Groups 211
Special Groups 214
Replacing text 216
Replacing with a callback 218
Splitting a string 221
Chapter 10: Using the Standard Library 223
The sys module 224
Interpreter Information 224
STDIO 225
Launching external programs 226
Paths, directories and filenames 228
Walking directory trees 232
Grabbing data from the web 235
Sending email 238

math functions 244

Random values 245

Dates and times 248
Zipped archives 252
Appendix A: Where do I go from here? 255
Resources for learning Python 255
Appendix B: Python Bibliography 257
Appendix C: String Formatting 261
Overview 261
Parameter Selectors 262
f-strings 264
Data types 265
Field Widths 268
Alignment 271
Fill characters 274
Signed numbers 276
Parameter Attributes 279
Formatting Dates 281
Run-time formatting 285
Miscellaneous tips and tricks 288

Index 291

Introduction to Python 1

About this course

© 2021 CJ Associates (rev1.0) About this course

2 Introduction to Python

Welcome!

* We’re glad you’re here
* Class has hands-on labs for nearly every chapter

e Please make a name tent

Instructor name:

Instructor e-mail:

Have Fun!

About this course © 2021 CJ Associates (rev1.0)

Introduction to Python 3

Classroom etiquette

* Noisemakers off
* No phone conversations

* Come and go quietly during class.
Please turn off cell phone ringers and other noisemakers.
If you need to have a phone conversation, please leave the classroom.

We’re all adults here; feel free to leave the classroom if you need to use the restroom, make a phone
call, etc. You don’t have to wait for a lab or break, but please try not to disturb others.

Please do not bring killer rabbits to class. They might maim, dismember, or

IMPORTANT
otherwise disturb your fellow students.

© 2021 CJ Associates (rev1.0) About this course

4 Introduction to Python

Course Outline

Half-Day 1

Chapter 1 Getting Started
Chapter 2 Flow Control
Chapter 3 Errors and Exception Handling

Half-Day 2

Chapter 4 Array Types
Chapter 5 Working with Files

Half-Day 3

Chapter 6 Dictionaries and sets
Chapter 7 Functions
Chapter 8 Sorting

Half-Day 4

Chapter 9 Regular Expressions
Chapter 10 Sorting

The actual schedule varies with circumstances. The last day may include ad hoc topics

NOTE
requested by students

About this course © 2021 CJ Associates (rev1.0)

Introduction to Python 5

Student files

You will need to load some files onto your computer. The files are in a compressed archive. When you
extract them onto your computer, they will all be extracted into a directory named py3introx.

What’s in the files?

py3introx contains data and other files needed for the exercises
py3introx/EXAMPLES contains the examples from the course manuals.
py3introx/ANSWERS contains sample answers to the labs.

The student files do not contain Python itself. It will need to be installed

WARNING
separately. This has probably already been done for you.

© 2021 CJ Associates (rev1.0) About this course

6 Introduction to Python

Extracting the student files

Windows

Open the file py3introx.zip. Extract all files to your desktop. This will create the folder py3introx.

Non-Windows (includes Linux, OS X, etc)

Copy or download py3introx.tar.gz to your home directory. In your home directory, type

tar xzvf py3introx.tar.gz

This will create the py3introx directory under your home directory.

About this course © 2021 CJ Associates (rev1.0)

Introduction to Python

Examples

Nearly all examples from the course manual are provided in the EXAMPLES subdirectory.
It will look like this:

Example

cmd_line_args.py

#!/usr/bin/env python
import sys @
print(sys.argv) @

name = sys.argv[1] ®
print("name is", name)

@ Import the sys module
@ Print all parameters, including script itself

® Get the first actual parameter

cmd_line_args.py Fred

['/Users/jstrick/curr/courses/python/examples3/cmd_line_args.py', 'Fred']
name is Fred

© 2021 CJ Associates (rev1.0) About this course

Lab Exercises

* Relax - the labs are not quizzes

* Feel free to modify labs

* Ask the instructor for help

* Work on your own scripts or data

* Answers are in py3introx/ANSWERS

Appendices

» Appendix A: Where Do I Go from here?
* Appendix B: Python Bibliography

* Appendix C: String Formatting

About this course

Introduction to Python

© 2021 CJ Associates (rev1.0)

Introduction to Python 9

Chapter 1: Getting Started

Objectives

» Using variables

* Understanding dynamic typing
* Working with text

* Working with numbers

* Writing output to the screen

* Getting command line parameters

Reading keyboard input

© 2021 CJ Associates (rev1.0) Chapter 1: Getting Started

10 Introduction to Python

Using variables

Variables are created when assigned to

May hold any type of data
 Names are case sensitive

* Names may be any length

Variables in Python are created by assigning a value to them. They are created and destroyed as
needed by the interpreter. Variables may hold any type of data, including string, numeric, or Boolean.
The data type is dynamically determined by the type of data assigned.

Variable names are composed of letters, digits, and underscores, and may not start with a digit. Any
Unicode character that corresponds to a letter or digit may also be used.

Variable names are case sensitive, and may be any length. Spam, SPAM, and spam are three different
variables.

A variable must be assigned a value. A value of None (null) may be assigned if no particular value is
needed. It is good practice to make variable names consistent. The Python style guide Pep 8
(https://www.python.org/dev/peps/pep-0008) suggests:

all_lower_case _with_underscores

Example

quantity = 5

historian = "AJP Taylor"
final_result = 123.456
program_status = None

Chapter 1: Getting Started © 2021 CJ Associates (rev1.0)

https://www.python.org/dev/peps/pep-0008

Introduction to Python 11
Keywords and Builtins

* Keywords are reserved

» Using a keyword as a variable is a syntax error

72 builtin functions

* Builtins may be overwritten (but it’s not a big deal)

Python keywords may not be used as names. You cannot say class = 'Sophomore".

On the other hand, any of Python’s 72 builtin functions, such as len() or int() may be used as
identifiers, but that will overwrite the builtin’s functionality, so you shouldn’t do that.

Be especially careful not to use dir, file, id, len, max, min, and sum as variable names, as

TIP
these are all builtin function names.

Python 3 Keywords

False class finally s return

None continue for lambda try

True def from nonlocal while

and del global not with

as elif if or yield

assert else import pass

break except in raise

© 2021 CJ Associates (rev1.0) Chapter 1: Getting Started

12

Table 1. Builtin functions
abs()

allQ

any()

ascii()

bin()

bool()’
bytearray()
bytes()’
callable()
chr()
classmethod()’
compile()
complex()’
copyright()
credits()
delattr()
dict()’

dir()
divmod()
enumerate()
eval()

exec()

exit()

filter()’

float()’
format()
frozenset()’
getattr()
globals()
hasattr()
hash()
help()

hex()

id0

input()
int()’
isinstance()
issubclass()
iter()

len()
license()
list()"
locals(
map()’
max()
memoryview()’
min()

next()

*These functions are class constructors

Chapter 1: Getting Started

object()’
oct()
open()
ord()
pow()
print()
property()’
quit()
range()’
repr()
reversed()’
round()
set()’
setattr()
slice()’

sorted()

Introduction to Python

staticmethod()”

str()”
sum()
super()’
tuple()’
type()’
vars()

zip()’

© 2021 CJ Associates (rev1.0)

Introduction to Python 13
Variable typing

* Python is strongly and dynamically typed

» Type based on assigned value

Python is a strongly typed language. That means that whenever you assign a value to a name, it is
given a type. Python has many types built into the interpreter, such as int, str, and float. There are
also many packages providing types, such as date, re, or ur1lib.

Certain operations are only valid with the appropriate types.

WARNING Python does not automatically convert strings to numbers or numbers to strings.

© 2021 CJ Associates (rev1.0) Chapter 1: Getting Started

14 Introduction to Python

Strings

All strings are Unicode

String literals

o Single-delimited (single-line only)

o Triple-delimited (can be multi-line)
» Use single-quote or double-quote symbols
» Backslashes introduce escape sequences

» Strings can be raw (escape sequences not interpreted)

All python strings are Unicode strings. They can be initialized with several types of string literals.
Strings support escape characters, such as \t and \n, for non-printable characters.

Chapter 1: Getting Started © 2021 CJ Associates (rev1.0)

Introduction to Python

Single-delimited string literals

* Enclosed in pair of single or double quotes
* May not contain embedded newlines

» Backslash is treated specially.

Single-delimited strings are enclosed in a pair of single or double quotes.

15

Escape codes, which start with a backslash, are interpreted specially. This makes it possible to include

control characters such as tab and newline in a string.

Single-delimited strings may not contain an embedded newline; that is, they may not be spread over

multiple physical lines. They may contain \n, the escape code for a new line.

There is no difference in meaning between single and double quotes. The term "single-quoted" in the
Python documentation means that there is one quote symbol at each end of the sting literal.

TIP Adjacent string literals are concatenated.

Example

name = "John Smith"
title = 'Grand Poobah'
color = "red"

size = "large"

poem = "I think that I will never see\na poem lovely as a tree"

© 2021 CJ Associates (rev1.0)

Chapter 1: Getting Started

16 Introduction to Python
Triple-delimited string literals

» Used for multi-line strings
» Can have embedded quote characters

* Used for docstrings

Triple-delimited strings use three double or single quotes at each end of the text. They are the same as
single-delimited strings, except that individual single or double quotes are left alone, and that
embedded newlines are preserved.

Triple-delimited text is used for text containing literal quotes as well as documentation and boiler-
plate text.

Example

mmon

name = """James Earl "Jimmy" Carter
warning = """

Professional driver on closed course

Do not attempt

Your mileage may vary

Ask your doctor if Python is right for you

query = "'

from contacts

where zipcode = '90210'
order by 1name

The quotes on both ends of the text must match — use either all single or all double

NOTE
quotes, whether it’s a normal or a triple-delimited literal.

Chapter 1: Getting Started © 2021 CJ Associates (rev1.0)

Introduction to Python 17
Raw string literals

e Start withr

* Do not interpret backslashes

If a literal starts with r before the quote marks, then it is a raw string literal. Backslashes are not
interpreted.

This is handy if the text to be output contains literal backslashes, such as many regular expression
patterns, or Windows path names.

Example
pat = r"\w+\s+\w+"
loc = r"c:\temp"
msg = r"please put a newline character (\n) after each line"

This is similar to the use of single quotes in some other languages.

© 2021 CJ Associates (rev1.0) Chapter 1: Getting Started

18 Introduction to Python

Unicode characters

» Use \uXXXX to specify non-ASCII Unicode characters
» XXXX is Unicode value in hex

 \N\{NAME} also OK

Unicode characters may be embedded in literal strings. Use the Unicode value for the character in the
form \uXXXX, where XXXX is the hex version of the character’s code point.

You can also specify the Unicode character name using the syntax \N{name}.
For code points above FFFF, use \UXXXXXXX (note capital "U").

Raw strings accept the \u or \U notation, but do not accept \N{}.

See http://www.unicode.org/charts for lists of Unicode character names

Chapter 1: Getting Started © 2021 CJ Associates (rev1.0)

http://www.unicode.org/charts

Introduction to Python

Example

unicode.py

#!/usr/bin/env python

print('26\u00B0') @
print('26\N{DEGREE SIGN}') @
print(r'26\u0@Bo\n') @
print()

print('we spent \u20@ac1.23M for an original C\u@@e9zanne') @
print("Romance in F\u266F Major")
print()

data = ["\UQ0O1F95A", '\U00OO1F414'] ®
print("unsorted:", data)
print("sorted:", sorted(data))

@ Use \uXXXX where XXXX is the Unicode value in hex
@ The Unicode entity name can be used, enclosed in \N{}
® \N{} is not expanded in raw strings

@ More examples.

® Python answers the age-old question.

unicode.py

26°
26°
26\u00BO\n

we spent €1.23M for an original Cézanne
Romance in FO Major

unsorted: ['0', '0']
sorted: ['0", '0']

© 2021 CJ Associates (rev1.0)

19

Chapter 1: Getting Started

20

Table 2. Escape Sequences

Sequence
\newline

\\

\

\"

\a

\b

\f

\n
\N{name}
\r

\t

\UXXXX
\UXXXXXXXX
\ooo

\xhh

Description

Embedded newline

Backslash

Single quote

Double quote

BEL

BACKSPACE

FORMFEED

LINEFEED

Unicode named code point name
Carriage Return

TAB

16-bit Unicode code point

32-bit Unicode code point (for values above 0XFFFF)
Char with octal ASCII value ooo

Character with hex ASCII value hh

Chapter 1: Getting Started

Introduction to Python

© 2021 CJ Associates (rev1.0)

Introduction to Python 21

String operators and methods

Methods called from string objects
» Some builtin functions apply to strings
* Strings cannot be modified in-place

» Modified copies of strings are returned

Python has a rich set of operators and methods for manipulating strings.

Methods are called from string objects (variables) using "dot notation" — STR.method(). Some builtin
functions are not called from strings, such as len().

Strings are immutable — they can not be changed (modified in-place). Many string functions return a
modified copy of the string.

Use + (plus) to concatenate two strings.

String methods may be chained. That is, you can call a string method on the string returned by another
method.

If you need a substring function, that is provided by the slice operation in the Array Types chapter.

String methods may be called on literal strings as well

s = 'Barney Rubble'
print(s.upper())
print(s.count('b"))
print(s.lower().count('b"))
print(",".join(some_list))
print("abc".upper())

© 2021 CJ Associates (rev1.0) Chapter 1: Getting Started

22

Example

strings.py

#!/usr/bin/env python
a = "My hovercraft is full of EELS"

print("original:", a)

print("upper:", a.upper())

print("lower:", a.lower())

print("swapcase:", a.swapcase()) @

print("title:", a.title()) @

print("e count (normal):", a.count('e'))

print("e count (lower-case):", a.lower().count('e')) ®
print("found EELS at:", a.find('EELS"))

print("found WOLVERINES at:", a.find('WOLVERINES')) @

b = "graham"
print("Capitalized:", b.capitalize()) ®

@ Swap upper and lower case

@ All words are capitalized

Introduction to Python

® Methods can be chained. The next method is called on the object returned by the previous method.

@ Returns -1 if substring not found

® Capitalizes first character of string, only if it is a letter

strings.py

original: My hovercraft is full of EELS
upper: MY HOVERCRAFT IS FULL OF EELS
lower: my hovercraft is full of eels
swapcase: mY HOVERCRAFT IS FULL OF eels
title: My Hovercraft Is Full Of Eels

e count (normal): 1

e count (lower-case): 3

found EELS at: 25

found WOLVERINES at: -1

Capitalized: Graham

Chapter 1: Getting Started

© 2021 CJ Associates (rev1.0)

Introduction to Python

String Methods

Table 3. string methods
Method

S.capitalize()

S.casefold()
S.center(width[, fillchar])

S.count(sub, [, start[, end]])

S.encode(encoding="utf-8',
errors='strict’)

S.endswith(suffix[, start|,
end]])

S.expandtabs(tabsize=8)

S.find(subl, start[, end]])

S.format(*args, **kwargs)

S.format_map(mapping)

S.index(subl, start[, end]])

S.isalnum()

S.salpha()

S.isdecimal()

© 2021 CJ Associates (rev1.0)

23

Description

Return a capitalized version of S, i.e. make the first character have
upper case and the rest lower case.

Return a version of S suitable for caseless comparisons.

Return S centered in a string of length width. Padding is done using the
specified fill character (default is a space)

Return the number of non-overlapping occurrences of substring sub.
Optional arguments start and end specify a substring to search.

Encode S using the codec registered for encoding. Default encoding is
'utf-8'. errors may be given to set a different error handling scheme.
Default is 'strict' meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are 'ignore’, 'replace’ and
'xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

Return True if S ends with the specified suffix, False otherwise. With
optional start, test S beginning at that position. With optional end, stop
comparing S at that position. suffix can also be a tuple of strings to try.

Return a copy of S where all tab characters are expanded using spaces.
If tabsize is not given, a tab size of 8 characters is assumed.

Return the lowest index in S where substring sub is found, such that
sub is contained within S[start:end]. Optional arguments start and end
are interpreted as in slice notation. Returns -1 on failure.

Return a formatted version of S, using substitutions from args and
kwargs. The substitutions are identified by braces ('{' and '}").

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces ('{' and '}").

Like find() but raise ValueError when the substring is not found.

Return True if all characters in S are alphanumeric and there is at least
one character in S, False otherwise.

Return True if all characters in S are alphabetic and there is at least
one character in S, False otherwise.

Return True if there are only decimal characters in S, False otherwise.

Chapter 1: Getting Started

24

Method
S.isdigit()

S.isidentifier()

S.islower()

S.isnumeric()

S.isprintable()

S.isspace()

S.istitle()

S.isupper()

S.join(iterable)

S.Jjust(widthl[, fillchar])

S.lower()

S.strip([chars])

S.partition(sep)

S.replace(old, new[, count])

S.rfind(subl, start[, end]])

S.rindex(subl, start[, end]])

S.rjust(widthl[, fillchar])

Chapter 1: Getting Started

Introduction to Python

Description

Return True if all characters in S are digits and there is at least one
character in S, False otherwise.

Return True if S is a valid identifier according to the language
definition.

Return True if all cased characters in S are lowercase and there is at
least one cased character in S, False otherwise.

Return True if there are only numeric characters in S, False otherwise.

Return True if all characters in S are considered printable in repr() or S
is empty, False otherwise.

Return True if all characters in S are whitespace and there is at least
one character in S, False otherwise.

Return True if S is a titlecased string and there is at least one character
in S, i.e. upper- and titlecase characters may only follow uncased
characters and lowercase characters only cased ones. Return False
otherwise.

Return True if all cased characters in S are uppercase and there is at
least one cased character in S, False otherwise.

Return a string which is the concatenation of the strings in the iterable.
The separator between elements is the string from which join() is
called

Return S left-justified in a Unicode string of length width. Padding is
done using the specified fill character (default is a space).

Return a copy of the string S converted to lowercase.

Return a copy of the string S with leading whitespace removed. If chars
is given and not None, remove characters in chars instead.

Search for the separator sep in S, and return the part before it, the
separator itself, and the part after it. If the separator is not found,
return S and two empty strings.

Return a copy of S with all occurrences of substring old replaced by
new. If the optional argument count is given, only the first count
occurrences are replaced.

Return the highest index in S where substring sub is found, such that
sub is contained within S[start:end]. Optional arguments start and end
are interpreted as in slice notation. Return -1 on failure.

Like rfind() but raise ValueError when the substring is not found.

Return S right-justified in a string of length width. Padding is done
using the specified fill character (default is a space).

© 2021 CJ Associates (rev1.0)

Introduction to Python

Method

S.rpartition(sep)

S.rsplit(sep=None, maxsplit=-
1)

S.rstrip([chars])

S.split(sep=None, maxsplit=-
1)

S.splitlines([keepends])

S.startswith(prefix|[, start[,
end]])

S.strip([chars])

S.swapcase()

S.title()

S.translate(table)

S.upper()
S.zfill(width)

© 2021 CJ Associates (rev1.0)

25

Description

Search for the separator sep in S, starting at the end of S, and return
the part before it, the separator itself, and the part after it. If the
separator is not found, return two empty strings and

Return a list of the words in S, using sep as the delimiter string,
starting at the end of the string and working to the front. If maxsplit is
given, at most maxsplit splits are done. If sep is not specified, any
whitespace string is a separator.

Return a copy of the string S with trailing whitespace removed. If chars
is given and not None, remove characters in chars instead.

Return a list of the words in S, using sep as the delimiter string. If
maxsplit is given, at most maxsplit splits are done. If sep is not
specified or is None, any whitespace string is a separator and empty
strings are removed from the result.

Return a list of the lines in S, breaking at line boundaries. Line breaks
are not included in the resulting list unless keepends is given and true.

Return True if S starts with the specified prefix, False otherwise. With
optional start, test S beginning at that position. With optional end, stop
comparing S at that position. prefix can also be a tuple of strings to try.

Return a copy of the string S with leading and trailing whitespace
removed. If chars is given and not None, remove characters in chars
instead.

Return a copy of S with uppercase characters converted to lowercase
and vice versa.

Return a titlecased version of S, i.e. words start with title case
characters, all remaining cased characters have lower case.

Return a copy of the string S, where all characters have been mapped
through the given translation table, which must be a mapping of
Unicode ordinals to Unicode ordinals, strings, or None. Unmapped
characters are left untouched. Characters mapped to None are deleted.

Return a copy of S converted to uppercase.

Pad a numeric string S with zeros on the left, to fill a field of the
specified width. The string S is never truncated.

Chapter 1: Getting Started

26 Introduction to Python
Numeric literals

* Four kinds of numeric objects
> Booleans
o Integers
> Floats
o Complex numbers
* Integer literals can be decimal, octal, or hexadecimal

* Floating point can be traditional or scientific notation

Boolean

Boolean values can be 1 (true) or 0 (false). The keywords True and False can be used to represent these
values, as well.

Integers

Integers can be specified as decimal, octal, or hexadecimal. Prefix the number with 0o for octal, 0x for
hex, or Ob for binary. Integers are signed, and can be arbitrarily large.

Floats

Floating point integers may be specified in traditional format or in scientific notation.

Complex Numbers

Complex numbers may be specified by adding J to the end of the number.

Chapter 1: Getting Started © 2021 CJ Associates (rev1.0)

Introduction to Python 27

Example

numeric.py

#!/usr/bin/env python

a=>5

b =10

c = 20.22

d = 00123 ®
e = Oxdeadbeef @
f = 0b10011101 @

print("a, b, ¢", a, b, ¢)
print("a + b", a + b)
print("a + ¢", a + c)
print("d", d)

print("e", e)

print("f", f)

@ Octal

@ Hex

® Binary

numeric.py

a, b, ¢ 510 20.22
a+bi15s

a+c 25.22

d 83

e 3735928559

f 157

© 2021 CJ Associates (rev1.0) Chapter 1: Getting Started

28 Introduction to Python
Math operators and expressions

* Many built-in operators and expressions

» Operations between integers and floats result in floats

Python has many math operators and functions. Later in this course we will look at some libraries with
extended math functionality.

Most of the operators should look familiar; a few may not:

Division
Division (/) always returns a float result.

Assignment-with-operation

Python supports C-style assignment-with-operation. For instance, x += 5 adds 5 to variable x. This
works for nearly any operator in the format:

VARIABLE OP=VALUE e.g. x += 1
is equivalent to

VARIABLE = VARIABLE OP VALUE e.g. x =x +1

Exponentiation

To raise a number to a power, use the ** (exponentiation) operator or the pow() function.

Floored Division

Using the floored division operator //, the result is always rounded down to the nearest whole number.

Chapter 1: Getting Started © 2021 CJ Associates (rev1.0)

Introduction to Python 29

Order of operations
Please Excuse My Dear Aunt Sally!

Parentheses, Exponents, Multiplication or Division, Addition or Subtraction (but use parentheses for
readability)

Example

math_operators.py

#!/usr/bin/env python

X = 22
x += 10 @
y =5
y*=3 @

print("x:", x)
print("y:", y)

print("2 ** 16", 2 ** 16)

print("x / y", x /vy)
print("x // y", x //y) @

@ Sameasx=x+1,y=y* 3, etc.

@ Returns floored result (rounded down to nearest whole number)

math_operators.py

x: 32

y: 15

2 ** 16 65536

x / y 2.1333333333333333
x //y 2

Python does not have the ++ and — (post-increment and post-decrement) operators

NOTE)
common to many languages derived from C.

© 2021 CJ Associates (rev1.0) Chapter 1: Getting Started

30

Table 4. Python Math Operators and Functions

Operator or Function

X+y
X-y

X*y

Xy

X/ly

X%y

X

+X

abs(x)

int(x)
float(x)
complex(re,im)
c.conjugate()
divmod(x, y)

pow(x, y)
X ke y

Chapter 1: Getting Started

What it does

sumofxandy

difference of x and y
product of x and y

quotient of x and y

(floored) quotient of x and y

remainder of x/y

X negated

x unchanged

absolute value or magnitude of x
X converted to integer

x converted to floating point

Introduction to Python

a complex number with real part re, imaginary part im. im defaults to zero.

conjugate of the complex number ¢
the pair xX//y, X% y)

X raised to the powery

© 2021 CJ Associates (rev1.0)

Introduction to Python

Converting among types

* No automatic conversion between numbers and strings

e Builtin functions

o

int() convert string or number to integer
float() convert string or number to float
str() convert anything to string

bool() convert anything to bool

list() convert any iterable to a list

tuple() convert any iterable to a tuple
set() convert any iterable to a set

dict() convert any iterable of pairs to a dict

31

Python is dynamically typed; if you assign a number to a variable, it will raise an error if you use it
with a string operator or function; likewise, if you assign a string, you can’t use it with numeric

operators.

There are built-in functions to do these conversions. Use int(s) to convert string s to an integer. Use
str(n) to convert anything to a string, and so forth.

If the string passed to int() or float() contains characters other than digits or minus sign, a runtime
error is raised. Leading or trailing whitespace, however, are ignored. Thus " 123 " is OK, but "123ABC"

is not.

© 2021 CJ Associates (rev1.0)

Chapter 1: Getting Started

32 Introduction to Python

Writing to the screen

Use print() function

» Adds spaces between arguments (by default)

Adds newline at end (by default)
+ Use sep parameter for alternate separator

» Use end parameter for alternate ending

To output text to the screen, use the print function. It takes a list of one or more arguments, and writes
them to the screen. By default, it puts a space between them and ends with a newline.

Two special named arguments can modify the default behavior. The sep parameter specifies what is
output between items, and end specifies what is written after all the arguments.

Example

print_examples.py

#!/usr/bin/env python

print("Hello, world")

print("Hello,", end=" ') @
print("world")

print("Hello,", end=" ")
print("world", end="!") @

print("#-------mememememe "
x = "Hello"
y = "world"

print(x, y) ®

Chapter 1: Getting Started © 2021 CJ Associates (rev1.0)

Introduction to Python

@ Print space instead of newline at the end
@ Print bang instead of newline at end

® Item separator is space instead of comma
@ Item separator is comma + space

® Item separator is empty string

© 2021 CJ Associates (rev1.0)

Chapter 1: Getting Started

33

34 Introduction to Python

print_examples.py

Hello, world

Bom oo
Hello, world

Bom oo

i2lle, farlalisssssssssssssssssssssa=
Hello world

Bom oo

Hello, world

Bom oo

Helloworld

Bo oo ___

Chapter 1: Getting Started © 2021 CJ Associates (rev1.0)

Introduction to Python 35
String Formatting

 Use the .format() method
» Syntax: "template".format(VALUES)
» Placeholders: {left_curly}Num:FlagsWidthType{right_curly}

Strings have a format() method which allows variables and other objects to be embedded in strings
and optionally formatted. Parameters to format() are numbered starting with 0, and are formatted by
the correspondingly numbered placeholders in the string. However, if no numbers are specified, the
placeholders will be auto-numbered from left to right, starting with 0. You cannot mix number and
non-numbered placeholders in the same format string.

A placeholder looks like this: {} (for auto-numbering), or {n} (for manual numbering). To add
formatting flags, follow the parameter number (if any) with a colon, then the type and other flags. You
can also used named parameters, and specify the name rather than the parameter index.

Builtin types to not need to have the type specified, but you may specify the width of the formatted
value, the number of decimal points, or other type-specific details.

For instance, {0} will use default formatting for the first parameter; {2:04d} will format the third
parameter as an integer, padded with zeroes to four characters wide.

There are many more ways of using format(); this discussion describes some of the basics.
To include literal braces in the string, double them: {{ }}.

See [string_formatting] for details on formatting.

For even more information, check out the PyDoc topic FORMATTING, or section 6.1.3.1
TIP [ttps://docs.python.org/3/library/string. html#format-specification-mini-language] of The Python
Standard Library documentation, the Format Specification Mini-Language.

Python 3.6 added f-strings, which will further simplify embedding variables in strings.

NOTE
See Pep 0498 [https://www.python.org/dev/peps/pep-0498/]

© 2021 CJ Associates (rev1.0) Chapter 1: Getting Started

ttps://docs.python.org/3/library/string.html#format-specification-mini-language
https://www.python.org/dev/peps/pep-0498/

36 Introduction to Python

Example

string_formatting.py

#!/usr/bin/env python

name = "Tim"
count = 5

avg = 3.456
info = 2093

print("Name is [{:<10s}]".format(name)) @
print("Name is [{:>10s}]".format(name)) @
print("count is {:03d} avg is {:.2f}".format(count, avg)) ®

print("info is {0} {0:d} {0:0} {0:x}".format(info)) @
print("info is {0} {0:d} {0:#0} {0:#x}".format(info)) ®

print("${:,d}".format(38293892)) ®
print("It is {temp} in {city}".format(city="'Orlando', temp=85)) @

® < means left justify (default for non-numbers), 10 is field width, s formats a string
@ > means right justify

® .2f means round a float to 2 decimal points

@ d is decimal, o is octal, x is hex

® # means add 0x, 0o, etc.

® , means add commas to numeric value

@ parameters can be selected by name instead of position :b string formatting.py

Name is [Tim]

Name is [Tim]

count is 005 avg is 3.46

info is 2093 2093 4055 82d
info is 2093 2093 004055 0x82d
$38,293,892

It is 85 in Orlando

Chapter 1: Getting Started © 2021 CJ Associates (rev1.0)

Introduction to Python 37
Legacy String Formatting

* Use the % operator
» Syntax: "template" % (VALUES)

* Similar to printf() in C

Prior to Python 2.6, the % operator was used for formatting. It returns a string that results from filling
in a template string with placeholders in specified formats. :

%flagW.Ptype

where W is width, P is precision (max width or # decimal places)

The placeholders are similar to standard formatting, but are positional rather than numbered, and are
specified with a percent sign, rather than braces.

If there is only one value to format, the value does not need parentheses.

Legacy string formatting is deprecated as of Python 3.1, and may be removed in

WARNING .
the future. It supports most of the same formatting features as the new style.

© 2021 CJ Associates (rev1.0) Chapter 1: Getting Started

38

Table 5. Legacy formatting types
d,i
0
u
X,X
e,E
t,F
g,G
C
r
S

%

Table 6. Legacy formatting flags

#
0

+

(blank)

Chapter 1: Getting Started

Introduction to Python

decimal integer

octal integer

unsigned decimal integer

hex integer (lower, UPPER case)
scientific notation (lower, UPPER case)
floating point

autochoose between e and f

character

string (using repr() method)

string (using str() method)

literal percent sign

left justify (default is right justification)
use alternate format

left-pad number with zeros

precede number with + or -

precede positive number with blank, negative
with -

© 2021 CJ Associates (rev1.0)

Introduction to Python

Example

string_formatting_legacy.py

#!/usr/bin/env python

name = "Tim"
count = 5

avg = 3.456
info = 2093

[
%

print("Name is [%-10s]"

print("Name is [%10s]" % name)
print("count is %03d avg is %.2f" % (count, avg)) ®

print("info is %d %0 %x
print("info is %d %0 %x

print("info is %d %#oo %#x" % (info, info, info))

@ Dash means left justify string

@ Right justify (default)

® Argument to % is either a single variable or a tuple
@ Arguments must be repeated to be used more than once

® Obscure way of doing the same thing Note: (x,) is singleton tuple

® # means add 0x, 0o, etc.

string_formatting legacy.py

Name is [Tim]
Name is [Tim]
count is 005 avg is 3.46
info is 2093 4055 82d
info is 2093 4055 82d

info is 2093 00406550 0x82d

© 2021 CJ Associates (rev1.0)

info, info, info))
(info,) * 3))

39

Chapter 1: Getting Started

40 Introduction to Python
Command line parameters

» Use the argv list that is part of the sys module
* sys must be imported

* Element 0 is the script name itself

To get the command line parameters, use the list sys.argv. This requires importing the sys module. To
access elements of this list, use square brackets and the element number. The first element (index 0) is
the name of the script, so sys.argv[1] is the first argument to your script.

Example

sys_argv.py

#!/usr/bin/env python
import sys

print(sys.argv)
print()

name = sys.argv[1] @
print("name is", name)

@ First command line parameter

sys_argv.py Gawain

['/Users/jstrick/curr/courses/python/examples3/sys_argv.py', 'Gawain']

name is Gawain

If you use an index for a non-existent parameter, an error will be raised and your script
TIP will exit. In later chapters you will learn how to check the size of a list, as well as how to
trap the error.

Chapter 1: Getting Started © 2021 CJ Associates (rev1.0)

Introduction to Python 41
Reading from the keyboard

* Use input()
* Provides a prompt string

 Use int() or float() to convert input to numeric values

To read a line from the keyboard, use input(). The parameter is a prompt string, and it returns the text
that was entered. You can use int() or float() to convert the input to an integer or a floating-point
number.

If you use int() or float() to convert a string, a fatal error will be raised if the string
TIP contains any non-numeric characters or any embedded spaces. Leading and trailing
spaces will be ignored.

© 2021 CJ Associates (rev1.0) Chapter 1: Getting Started

42 Introduction to Python

Example

keyboard_input.py

#!/usr/bin/env python

name = input("What is your name: ")
quest = input("What is your quest? ")
print(name, "seeks", quest)

raw_num = input("Enter number: ") @

num = int(raw_num) @

print("2 times", num, "is ", 2 * num)

@ input is always a string

@ convert to numbers as needed

keyboard_input.py

What is your name: Sir Lancelot
What is your quest? the Grail
Sir Lancelot seeks the Grail
Enter number: 5

2 times 5 is 10

Chapter 1: Getting Started © 2021 CJ Associates (rev1.0)

Introduction to Python 43

Chapter 1 Exercises

Exercise 1-1 (c2f.py)

Write a Celsius to Fahrenheit converter. Your script should prompt the user for a Celsius temperature,
then print out the Fahrenheit equivalent.

To run the script at a command prompt:

python c2f.py

(or run from PyCharm/VS Code/Spyder etc)
The program prompts the user, and the user enters the temperature to be converted.
The formulaisF = ((9 * C) / 5) + 32. Be sure to convert the user-entered value into a float.

Test your script with the following values: 100, 0, 37, -40

Exercise 1-2 (c2f_batch.py)

Create another C to F converter. This time, your script should take the Celsius temperature from the
command line and output the Fahrenheit value.

To run the script at a command prompt:
python c2f_batch.py 100

(or run from PyCharm/VS Code/Spyder etc)
Test with the values from c2f.py.

These two programs should be identical, except for the input.

© 2021 CJ Associates (rev1.0) Chapter 1: Getting Started

44 Introduction to Python

Exercise 1-3 (string_fun.py)

Write a script to prompt the user for a full name. Once the name is read in, do the following:

Print out the name as-is
 Print the name in upper case
e Print the name in title case

 Print the number of occurrences of '

Print the length of the name

* Print the position (offset) of "jacob" in the string

Run the program, and enter "john jacob jingleheimer schmidt"

Chapter 1: Getting Started © 2021 CJ Associates (rev1.0)

Introduction to Python 45

Chapter 2: Flow Control

Objectives

* Understanding how code blocks are delimited
* Implementing conditionals with the if statement

* Learning relational and Boolean operators

Exiting a while loop before the condition is false

© 2021 CJ Associates (rev1.0) Chapter 2: Flow Control

46 Introduction to Python

About flow control

e Controls order of execution
* Conditionals and loops

 Uses Boolean logic

Flow control means being able to conditionally execute some lines of code, while skipping others,
depending on input, or being able to repeat some lines of code.

In Python, the flow control statements are if, while, and for.

Another kind of flow control is a function, which goes off to some other code, executes

NOTE
it, and returns to the current location. We’ll cover functions in a later chapter.

Chapter 2: Flow Control © 2021 CJ Associates (rev1.0)

Introduction to Python 47

What’s with the white space?

Blocks defined by indenting
* No braces or BEGIN-END keywords

Enforces what good programmers do anyway

* Be consistent (suggested indent is 4 spaces)

One of the first things that most programmers learn about Python is that whitespace is significant. This
might seem wrong to many; however, you will find that it was a great decision by Guido, because it
enforces what programmers should be doing anyway.

It’s very simple: After a line introducing a block structure (if statement, for/while loop, function
definition, or class definition), all indented statements under the line are part of the block. Blocks may
be nested, as in any language. The nested block has more indentation. A block ends when the
interpreter sees a line with less indentation than the previous line.

Example
if value > 6: start if statement
print(value) body of if

linecount = @

for line in config: start for loop
if line.startswith("global"): start if (body of for)
print(line) body of if
linecount += 1 back to body of for

Be consistent with indenting — use either all tabs or all spaces. Most editors can be set to

TIP
your preference. (Guido suggests using 4 spaces).

© 2021 CJ Associates (rev1.0) Chapter 2: Flow Control

48 Introduction to Python
if and elif

e The basic conditional statement is if
e Use else for alternatives

* elif provides nested if-else

The basic conditional statement in Python is if expression:. If the expression is true, then all statements
in the block will be executed.

Example

if EXPR:
statement
statement

The expression does not require parentheses; only the colon at the end of the if statement is required.

In Python, a value is false if it is numeric zero, an empty container (string, list, tuple, dictionary, set,
etc.), the builtin False object, or None. All other values are true.

The values True and False are predefined to have values of 1 and 0, respectively.

If an else statement is present, statements in the else block will be executed when the if statement is
false.

For nested if-then, use the elif statement, which combines an if with an else. This is useful when the
decision has more than two possibilities.

True and False are case-sensitive.

Don’t say
if x == True:
WARNING

unless you really mean that x could only be 0 (False) or 1 (True). Just say

if x:

Chapter 2: Flow Control © 2021 CJ Associates (rev1.0)

Introduction to Python

Conditional Expressions

» Used for simple if-then-else conditions

49

When you have a simple if-then-else condition, you can use the conditional expression. If the condition
is true, the first expression is returned; otherwise the second expression is returned.

value = expr1 if condition else expr2

This is a shortcut for

if condition:
value = expri
else:
value = expr2

Example

print(long_message if DEBUGGING else short_message)

audience = 'j' if is_juvenile(curr_book_rec) else

file mode = 'a' if APPEND MODE else 'w'

© 2021 CJ Associates (rev1.0)

Chapter 2: Flow Control

50 Introduction to Python
Relational Operators

* Compare two objects
* Overloaded for different types of data

* Numbers cannot be compared to strings

Python has six relational operators, implementing equality or greater than/less than comparisons.
They can be used with most types of objects. All relational operators return True or False.

Strings and numbers cannot be compared using any of the greater-than or less-than

NOTE o
operators. Also, no string is equal to any number.

Chapter 2: Flow Control © 2021 CJ Associates (rev1.0)

Introduction to Python 51

Example

if_else.py

#!/usr/bin/env python

raw_temp = input("Enter the temperature: ")
temp = int(raw_temp)

if temp < 76:
print("Don't go swimming")

num = int(input("Enter a number: "))
if num > 1000000:

print(num, "is a big number")
else:

print("your number is", num)

raw_hour = input("Enter the hour: ")
hour = int(raw_hour)

if hour < 12:
print("Good morning")
elif hour < 18: ©)
print("Good afternoon")
elif hour < 23:
print("Good evening")
else:
print("You're up late")

@ elif is short for "else if", and always requires an expression to check

if_else.py

Enter the temperature: 50
Don't go swimming

Enter a number: 9999999
9999999 is a big number
Enter the hour: 8

Good morning

© 2021 CJ Associates (rev1.0) Chapter 2: Flow Control

52 Introduction to Python
Boolean operators

* Combine Boolean values
* Can be used with any expressions
 Short-circuit

* Return last operand evaluated
The Boolean operators and, or, and not may be used to combine Boolean values. These do not need to
be of type bool - the values will be converted as necessary.

These operators short-circuit; they only evaluate the right operand if it is needed to determine the
value. In the expression a() or b(), if a() returns True, b() is not called.

The return values of Boolean operators are the last operand evaluated. 4 and 5 returns 5. 0 or 4
returns 4.

Chapter 2: Flow Control © 2021 CJ Associates (rev1.0)

Introduction to Python

Table 7. Boolean Operators
Expression
AND

12 and 5
5and 12

0 and 12

12 and 0

" and 12
12 and "
OR

12 or 5
Sorl2
Oor12

12 0r0
""or 12

12 or ""

© 2021 CJ Associates (rev1.0)

Value

12

nn

12

12
12
12
12

53

Chapter 2: Flow Control

while loops

* Loop while some condition is True
» Used for getting input until user quits

» Used to create services (AKA daemons)

while EXPR:
statement
statement

Introduction to Python

The while loop is used to execute code as long as some expression is true. Examples include reading
input from the keyboard until the users signals they are done, or a network server looping forever

with a while True: loop.

In Python, the for loop does much of the work done by a while loop in other languages.

NOTE Unlike many languages, reading a file in Python generally uses a for loop.

Chapter 2: Flow Control

© 2021 CJ Associates (rev1.0)

Introduction to Python 55
Alternate ways to exit a loop

* break exits loop completely

* continue goes to next iteration

Sometimes it is convenient to exit a loop without regard to the loop expression. The break statement
exits the smallest enclosing loop.

This is used when repeatedly requesting user input. The loop condition is set to True, and when the
user enters a specified value, the break statement is executed.

Other times it is convenient to abandon the current iteration and go back to the top of the loop without
further processing. For this, use the continue statement.

Example

while_loop_examples.py

#!/usr/bin/env python
print("Welcome to ticket sales\n")

while True: @
raw_quantity = input("Enter quantity to purchase (or q to quit): ")
if raw_quantity == "":
continue @

if raw_quantity.lower() == 'q':
print("goodbye!")
break ®

quantity = int(raw_quantity) # could validate via try/except
print("sending {} ticket(s)".format(quantity))

© 2021 CJ Associates (rev1.0) Chapter 2: Flow Control

56 Introduction to Python

@ Loop "forever"
@ Skip rest of loop; start back at top
® Exit loop

while_loop_examples.py

Welcome to ticket sales

Enter quantity to purchase (or q to quit): 4
sending 4 ticket(s)

Enter quantity to purchase (or q to quit):
Enter quantity to purchase (or q to quit): 2
sending 2 ticket(s)

Enter quantity to purchase (or q to quit): q
goodbye!

Chapter 2: Flow Control © 2021 CJ Associates (rev1.0)

Introduction to Python 57

Chapter 2 Exercises

Exercise 2-1 (c2f_loop.py)

Redo c2f.py to repeatedly prompt the user for a Celsius temperature to convert to Fahrenheit and then
print. If the user just presses Return, go back to the top of the loop. Quit when the user enters "q".

read in the temperature, test for "q" or "", and only then convert the temperature to a

TIP
float.#

Exercise 2-2 (guess.py)

Write a guessing game program. You will think of a number from 1 to 25, and the computer will guess
until it figures out the number. Each time, the computer will ask "Is this your number? "; You will enter
"1" for too low, "h" for too high, or "y" when the computer has got it. Print appropriate prompts and
responses.

1. Start with max_val = 26 and min_val = 0
2. guess is always (max_val + min_val)//2 Note integer division operator

TIP 3. If current guess is too high, next guess should be halfway between lowest and current
guess, and we know that the number is less than guess, so set max_val = guess

4. If current guess is too low, next guess should be halfway between current and
maximum, and we know that the number is more than guess, so set min_val = guess

If you need more help, see next page for pseudocode. When you get it working for 1 to 25,

TIP .
try it for 1 to 1,000,000. (Set max_value to 1000001).

Exercise 2-3 (guessx.py)

Get the maximum number from the command line or prompt the user to input the maximum, or both
(if no value on command line, then prompt).

© 2021 CJ Associates (rev1.0) Chapter 2: Flow Control

58 Introduction to Python

Pseudocode for guess.py

MAXVAL=26
MINVAL=0
while TRUE
GUESS = int((MAXVAL + MINVAL)/2)
prompt "Is your guess GUESS? "
read ANSWER
if ANSWER is "y"
PRINT "I got it!"
EXIT LOOP
if ANSWER is "h"
MAXVAL=GUESS
if ANSWER is "1"
MINVAL=GUESS

Chapter 2: Flow Control © 2021 CJ Associates (rev1.0)

Introduction to Python 59

Chapter 3: Errors and Exception Handling

Objectives

* Understanding syntax errors
* Handling exceptions with try-except-else-finally

* Learning the standard exception objects

© 2021 CJ Associates (rev1.0) Chapter 3: Errors and Exception Handling

60 Introduction to Python

Syntax errors

* Generated by the parser

* Cannot be trapped

Syntax errors are generated by the Python parser, and cause execution to stop (your script exits). They
display the file name and line number where the error occurred, as well as an indication of where in
the line the error occurred.

Because they are generated as soon as they are encountered, syntax errors may not be handled.
Example

File "<stdin>", line 1

for x in bargle
N

SyntaxError: invalid syntax

TIP When running in interactive mode, the filename is <stdin>.

Chapter 3: Errors and Exception Handling © 2021 CJ Associates (rev1.0)

Introduction to Python 61
Exceptions

* Generated when runtime errors occur

» Usually fatal if not handled

Even if code is syntactically correct, errors can occur. A common run-time error is to attempt to open a
non-existent file. Such errors are called exceptions, and cause the interpreter to stop with an error
message.

Python has a hierarchy of builtin exceptions; handling an exception higher in the tree will handle any
children of that exception.

TIP Custom exceptions can be created by sub-classing the Exception object.

Example

exception_unhandled.py

#!/usr/bin/env python

5
"cheese"

z=x+y @

@ Adding a string to an int raises TypeError

exception_unhandled.py

Traceback (most recent call last):
File "exception_unhandled.py", line 6, in <module>
z=x+y @
TypeError: unsupported operand type(s) for +: 'int' and 'str

© 2021 CJ Associates (rev1.0) Chapter 3: Errors and Exception Handling

62 Introduction to Python
Handling exceptions with try

» Use try/except clauses

 Specify expected exception

To handle an exception, put the code which might generate an exception in a try block. After the try
block, you must specify a except block with the expected exception. If an exception is raised in the try
block, execution stops and the interpreter looks for the exception in the except block. If found, it
executes the except block and execution continues; otherwise, the exception is treated as fatal and the
interpreter exits.

Example

exception_simple.py

#!/usr/bin/env python

try: @
x =5
y = "cheese"
Z=x+y

print("Bottom of try")

except TypeError as err: @)
print("Naughty programmer! ", err)

print("After try-except") ®

@ Execute code that might have a problem
@ Catch the expected error; assign error object to err

® Get here whether or not exception occurred

exception_simple.py

Naughty programmer! unsupported operand type(s) for +: 'int' and 'str
After try-except

Chapter 3: Errors and Exception Handling © 2021 CJ Associates (rev1.0)

Introduction to Python 63
Handling multiple exceptions

» Use a tuple of exception names, but with single argument

If your try clause might generate more than one kind of exception, you can specify a tuple of exception
types, then the variable which will hold the exception object.

Example

exception_multiple.py

#!/usr/bin/env python

try:

5

"cheese"

X +y
open("sesame.txt")
print("Bottom of try")

X
y
z
f

except (IOError, TypeError) as err: @
print("Naughty programmer! ", err)

@ Use a tuple of 2 or more exception types

exception_multiple.py

Naughty programmer! unsupported operand type(s) for +: 'int' and 'str

© 2021 CJ Associates (rev1.0) Chapter 3: Errors and Exception Handling

64 Introduction to Python
Handling generic exceptions

» Use Exception
* Specify except with no exception list

* Clean up any uncaught exceptions

As a shortcut, you can specify Exception or an empty exception list. This will handle any exception
that occurs in the try block.

Example

exception_generic.py

#!/usr/bin/env python

try:

5

"cheese"

=X +y

= open("sesame.txt")
print("Bottom of try")

X
y
z
f

except Exception as err: @
print("Naughty programmer! ", err)

@ Will catch any exception

exception_generic.py

Naughty programmer! unsupported operand type(s) for +: 'int' and 'str

Chapter 3: Errors and Exception Handling © 2021 CJ Associates (rev1.0)

Introduction to Python 65
Ignoring exceptions
» Use the pass statement

Use the pass statement to do nothing when an exception occurs

Because the except clause must contain some code, the pass statement fulfills the syntax without doing
anything.

Example

exception_ignore.py

#!/usr/bin/env python

try:

5

"cheese"

X +y
open("sesame.txt")
print("Bottom of try")

X
y
z
f

except(TypeError, IOError): @
pass

@ Catch exceptions, and do nothing

exception_ignore.py

no output

This is probably a bad idea...

© 2021 CJ Associates (rev1.0) Chapter 3: Errors and Exception Handling

66 Introduction to Python

Using else

» executed if no exceptions were raised
* not required

» can make code easier to read

The last except block can be followed by an else block. The code in the else block is executed only if
there were no exceptions raised in the try block. Exceptions in the else block are not handled by the
preceding except blocks.

The else lets you make sure that some code related to the try clause (and before the finally clause) is
only run if there’s no exception, without trapping the exception specified in the except clause.

try:
something_that_can_throw_ioerror()
except IOError as e:
handle_the_IO0_exception()
else:
we don't want to catch this IOError if it's raised
something_else_that_throws_ioerror()
finally:
something_we_always_need_to_do()

Chapter 3: Errors and Exception Handling © 2021 CJ Associates (rev1.0)

Introduction to Python 67

Example

exception_else.py

#!/usr/bin/env python
numpairs = [(5, 1), (1, 5), (5, @), (@, 5)]
total = 0

for x, y in numpairs:
try:
quotient = x / y
except Exception as err:
print("uh-oh, when y = {}, {}".format(y, err))
else:
total += quotient @
print(total)

@ Only if no exceptions were raised

exception_else.py

uh-oh, when y = @, division by zero
5.2

© 2021 CJ Associates (rev1.0) Chapter 3: Errors and Exception Handling

68 Introduction to Python

Cleaning up with finally

Executed whether or not exception occurs
* Code executed whether or not exception raised
* Code runs even if exit() called

» For cleanup

A finally block can be used in addition to, or instead of, an except block. The code in a finally block is
executed whether or not an exception occurs. The finally block is executed after the try, except, and
else blocks.

What makes finally different from just putting statements after try-except-else is that the finally block
will execute even if there is a return() or exit() in the except block.

The purpose of a finally block is to clean up any resources left over from the try block. Examples
include closing network connections and removing temporary files.

Chapter 3: Errors and Exception Handling © 2021 CJ Associates (rev1.0)

Introduction to Python

Example

exception_finally.py

#!/usr/bin/env python

try:
X =5
y = 37
Z=X+y
print("z is", z)
except TypeError as err: ©)
print("Caught exception:", err)
finally:
print("Don't care whether we had an exception") @
print()
try:
X =5
y = "cheese"
Z=X+y

print("Bottom of try")
except TypeError as err:
print("Caught exception:", err)
finally:
print("Still don't care whether we had an exception")

@ Catch TypeError

@ Print whether TypeError is caught or not

© 2021 CJ Associates (rev1.0)

69

Chapter 3: Errors and Exception Handling

70 Introduction to Python

exception_finally.py

z is 42
Don't care whether we had an exception

Caught exception: unsupported operand type(s) for +: "int' and 'str

Still don't care whether we had an exception

Chapter 3: Errors and Exception Handling © 2021 CJ Associates (rev1.0)

Introduction to Python

The Standard Exception Hierarchy (Python 3.7)

BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratorExit
+-- Exception
+-- StopIteration
+-- StopAsyncIteration
+-- ArithmeticError
| +-- FloatingPointError
| +-- OverflowError
| +-- ZeroDivisionError
+-- AssertionError
+-- AttributeError
+-- BufferError
+-- EOFError
+-- ImportError
| +-- ModuleNotFoundError
+-- LookupError
| +-- IndexError
| +-- KeyError
+-- MemoryError
+-- NameError
| +-- UnboundLocalError
+-- OSError
| +-- BlockingIOError
| +-- ChildProcessError
| +-- ConnectionError
| | +-- BrokenPipeError
| | +-- ConnectionAbortedError
| | +-- ConnectionRefusedError
| | +-- ConnectionResetError
| +-- FileExistsError
| +-- FileNotFoundError
| +-- InterruptedError
| +-- IsADirectoryError
| +-- NotADirectoryError
| +-- PermissionError
| +-- ProcessLookupError
| +-- TimeoutError
+-- ReferenceError
+-- RuntimeError
| +-- NotImplementedError
| +-- RecursionError
+-- SyntaxError
| +-- IndentationError

© 2021 CJ Associates (rev1.0)

71

Chapter 3: Errors and Exception Handling

72 Introduction to Python

| +-- TabError

+-- SystemError

+-- TypeError

+-- ValueError

| +-- UnicodeError

| +-- UnicodeDecodeError

| +-- UnicodeEncodeError

| +-- UnicodeTranslateError

Chapter 3: Errors and Exception Handling © 2021 CJ Associates (rev1.0)

Introduction to Python 73

Chapter 3 Exercises

Exercise 3-1 (c2f _loop_safe.py)

Rewrite c2f _loop.py to handle the error that occurs if the user enters non-numeric data. The script
should print a message and keep going if an error occurs.

Exercise 3-2 (c2f_batch_safe.py)

Rewrite c2f_batch.py to handle the ValueError that occurs if sys.argv[1] is not a valid number.

© 2021 CJ Associates (rev1.0) Chapter 3: Errors and Exception Handling

74 Introduction to Python

Chapter 3: Errors and Exception Handling © 2021 CJ Associates (rev1.0)

Introduction to Python 75

Chapter 4: Array Types

Objectives

» Using single and multidimensional lists and tuples
* Indexing and slicing sequential types

* Looping over sequences

» Tracking indices with enumerate()

* Using range() to get numeric lists

* Transforming lists

© 2021 CJ Associates (rev1.0) Chapter 4: Array Types

76 Introduction to Python

About Array Types

e Array types
o str
> bytes
o list
o tuple
» Common properties of array types
o Same syntax for indexing/slicing
o Share some common methods and functions

o All can be iterated over with a for loop
Python provides many data types for working with multiple values. Some of these are array types.
These hold values in a sequence, such that they can be retrieved by a numerical index.
A str is an array of characters. A bytes object is array of bytes.

All array types may be indexed in the same way, retrieving a single item or a slice (multiple values) of
the sequence.

Array types have some features in common with other container types, such as dictionaries and sets.
These other container types will be covered in a later chapter.

All array types support iteration over their elements with a for loop.

Chapter 4: Array Types © 2021 CJ Associates (rev1.0)

Introduction to Python 77

Example

typical_arrays.py

#!/usr/bin/env python

fruits = ['apple', 'cherry', 'orange', 'kiwi', 'banana', 'pear', 'fig']
name = "Eric Idle"
knight = 'King", 'Arthur', 'Britain’

print(fruits[3]) @

print(name[2]) @
print(knight[1]) ®

typical_arrays.py

kiwi
;
Arthur

© 2021 CJ Associates (rev1.0) Chapter 4: Array Types

78 Introduction to Python

Lists

Array of objects

Create with list() or []
» Add items with append(), extend(), or insert

* Remove items with del, pop(), or remove()

A list is one of the fundamental Python data types. Lists are used to store multiple values. The values
may be similar — all numbers, all user names, and so forth; they may also be completely different. Due
to the dynamic nature of Python, a list may hold values of any type, including other lists.

Create a list with the list() class or a pair of square brackets. A list can be Initialized with a comma-
separated list of values.

Chapter 4: Array Types © 2021 CJ Associates (rev1.0)

Introduction to Python

79

Table 8. List Methods (note L represents a list)

Method

del L[i]
L.append(x)
L.count(x)
L.extend(iter)

L.index(x)
L.index(x, i)
L.index(x, i, j)

L.insert(, x)

L.pop0
L.pop(i)

L.remove(x)
L.clear()
L.reverse()

L.sort()
L.sort(key=func)

© 2021 CJ Associates (rev1.0)

Description

delete element at index i (keyword, not function)
add single value x to end of L

return count of elements whose value is x
individually add elements of iter to end of L

return index of first element whose value is x (after index i, before index j)

insert element x at offset i

remove element at index i (default -1) from L and return it

remove first element of L whose value is x
remove all elements and leave the list empty
reverses L in place

sort L in place — func is function to derive key from one element

Chapter 4: Array Types

80 Introduction to Python

Example

creating_lists.py

#!/usr/bin/env python

list1 = list() @

list2 = ['apple', 'banana', 'mango'] @
list3 =[] ®

list4 = 'apple banana mango'.split() @

print("list1:", list1)
print("list2:", list2)
print("list3:", 1ist3)
print("list4:", list4)

print("list2[0]:", list2[0]) ®
print("list4[2]:", 1ist4[2]) ®

print("list4[-1]:", list4[-1]) @

@ Create new empty list

@ Initialize list

® Create new empty list

@ Create list of strings with less typing

® First element of list2

® Third element of list4

@ Last element of list4

creating lists.py
list1: []
list2: ['apple', 'banana', 'mango’]
list3: []

list4: ['apple', 'banana', 'mango’]
list2[0]: apple
list4[2]: mango
list4[-1]: mango

Chapter 4: Array Types © 2021 CJ Associates (rev1.0)

Introduction to Python 81
Indexing and slicing

» Use brackets for index
* Use slice for multiple values

» Same syntax for strings, lists, and tuples

Python is very flexible in selecting elements from a list. All selections are done by putting an index or a
range of indices in square brackets after the list’s name.

To get a single element, specify the index (0-based) of the element in square brackets:

foo = ["apple", "banana", "cherry", "date", "elderberry",

“fig","grape"]

foo[1] the 2nd element of list foo -- banana

To get more than one element, use a slice, which specifies the beginning element (inclusive) and the
ending element (exclusive):

foo[2:5] foo[2], foo[3], foo[4] but NOT foo[5] U cherry, date, elderberry
If you omit the starting index of a slice, it defaults to 0:

foo[:5] foo[@], foo[1], foo[2], foo[3], foo[4] [apple,banana,cherry, date, elderberry
If you omit the end element, it defaults to the length of the list.

foo[4:] foo[4], foo[5], foo[6] 0 elderberry, fig, grape

A negative offset is subtracted from the length of the list, so -1 is the last element of the list, and -2 is
the next-to-the-last element of the list, and so forth:

foo[-1] foo[len(foo)-1] or foo[6] 0 grape
foo[-3] foo[len(foo)-3] or foo[4] [elderberry

The general syntax for a slice is

© 2021 CJ Associates (rev1.0) Chapter 4: Array Types

82 Introduction to Python

s[start:stop:step]

which means all elements s[N], where

start <= N < stop,

and start is incremented by step

TIP Remember that start is INclusive but stop is EXclusive.

Chapter 4: Array Types © 2021 CJ Associates (rev1.0)

Introduction to Python

Example

indexing and_slicing.py

#!/usr/bin/env python

pythons = ["Idle", "Cleese", "Chapman", "Gilliam", "Palin", "Jones"]

characters = "Roger", "Old Woman", "Prince Herbert", "Brother Maynard"

phrase = "She turned me into a newt"

print("pythons:", pythons)
print("pythons[0]", pythons[0]) @
print("pythons[5]", pythons[5]) @

print("pythons[0:3]", pythons[0:3]) ®

print("pythons[2:]", pythons[2:]) @
print("pythons[:2]", pythons[:2]) ®
print("pythons[1:-1]", pythons[1:-1])
print("pythons[0::2]", pythons[0::2])
print("pythons[1::2]", pythons[1::2])

pythons[3] = "Innes"
print("pythons:", pythons)
print()

print("characters", characters)
print("characters[2]", characters[2])
print("characters[1:]", characters[1:])

characters[2] = "Patsy" # ERROR -- can't assign to tuple

print()

print("phrase", phrase)
print("phrase[0]", phrase[0])
print("phrase[-1]", phrase[-1]) ©
print("phrase[21:25]", phrase[21:25])
print("phrase[21:]", phrase[21:])
print("phrase[:10]", phrase[:10])
print("phrase[::2]", phrase[::2])

© 2021 CJ Associates (rev1.0)

®Q®©

83

Chapter 4: Array Types

84 Introduction to Python

@ First element

@ Sixth element

® First 3 elements

@ Third element through the end

® First 2 elements

® Second through next-to-last element

@ Every other element, starting with first
Every other element, starting with second

© Last element

indexing_and_slicing.py

pythons: ['Idle', 'Cleese', 'Chapman', 'Gilliam', 'Palin', 'Jones']
pythons[0] Idle

pythons[5] Jones

pythons[@:3] ['Idle', 'Cleese', 'Chapman']

pythons[2:] ['Chapman', 'Gilliam', 'Palin', 'Jones']

pythons[:2] ['Idle", 'Cleese']

pythons[1:-1] ['Cleese', 'Chapman', 'Gilliam', 'Palin']
pythons[@::2] ['Idle', 'Chapman', 'Palin']

pythons[1::2] ['Cleese', 'Gilliam', 'Jones']

pythons: ['Idle', 'Cleese', 'Chapman', 'Innes', 'Palin', 'Jones']

characters ('Roger', 'Old Woman', 'Prince Herbert', 'Brother Maynard')
characters[2] Prince Herbert
characters[1:] ('0ld Woman', 'Prince Herbert', 'Brother Maynard')

phrase She turned me into a newt
phrase[0] S

phrase[-1] t

phrase[21:25] newt

phrase[21:] newt

phrase[:10] She turned
phrase[::2] Setre eit et

Chapter 4: Array Types © 2021 CJ Associates (rev1.0)

Introduction to Python 85
Iterating through a sequence

* use a for loop
» works with lists, tuples, strings, or any other iterable

e Syntax

for var ... in iterable:
statement
statement

To iterate through the values of a list, use the for statement. The variable takes on each value in the
sequence, and keeps the value of the last item when the loop has finished.

To exit the loop early, use the break statement. To skip the remainder of an iteration, and return to the
top of the loop, use the continue statement.

for loops can be used with any iterable object.

The loop variable retains the last value it was set to in the loop even after the loop is

TIP
finished. (If the loop is in a function, the loop variable is local; otherwise, it is global).

© 2021 CJ Associates (rev1.0) Chapter 4: Array Types

86 Introduction to Python

Example

iterating_over_arrays.py

#!/usr/bin/env python

my_list = ["Idle", "Cleese", "Chapman", "Gilliam", "Palin", "Jones"]
my_tuple = "Roger", "Old Woman", "Prince Herbert", "Brother Maynard"
my_str = "She turned me into a newt"

for p in my_list: @
print(p)
print()

for r in my_tuple: @
print(r)
print()

for ch in my_str: ®
print(ch, end=" ")
print()

@ Iterate over elements of list
@ Iterate over elements of tuple

® Iterate over characters of string

iterating _over_arrays.py

Idle
(leese
Chapman
Gilliam
Palin
Jones

Roger

01ld Woman
Prince Herbert
Brother Maynard

She turned me into a newt

Chapter 4: Array Types © 2021 CJ Associates (rev1.0)

Introduction to Python 87

Tuples

Designed for "records" or "structs"

Immutable (read-only)

Create with comma-separated list of objects

* Use for fixed-size collections of related objects

Indexing, slicing, etc. are same as lists
Python has a second array type, the tuple. It is something like a list, but is immutable; that is, you
cannot change values in a tuple after it has been created.

A tuple in Python is used for "records" or "structs" — collections of related items. You do not typically
iterate over a tuple; it is more likely that you access elements individually, or unpack the tuple into
variables.

Tuples are especially appropriate for functions that need to return multiple values; they can also be
good for passing function arguments with multiple values.

While both tuples and lists can be used for any data, there are some conventions.

* Use a list when you have a collection of similar objects.

» Use a tuple when you have a collection of related, but dissimilar objects.
In a tuple, the position of elements is important; in a list, the position is not important.
For example, you might have a list of dates, where each date was contained in a month, day, year tuple.

To specify a one-element tuple, use a trailing comma; to specify an empty tuple, use empty
parentheses.

5:
O

result
result

Parentheses are not needed around a tuple unless the tuple is nested in a larger data
structure.

TIP

© 2021 CJ Associates (rev1.0) Chapter 4: Array Types

88 Introduction to Python

Example

creating_tuples.py

#!/usr/bin/env python

birth_date = 1901, 5, 5

server_info = 'Linux', 'RHEL', 5.2, 'Melissa Jones'
latlon = 35.99, -72.390

print("birth_date:", birth_date)

print("server_info:", server_info)
print("latlon:", latlon)

creating tuples.py

birth_date: (1901, 5, 5)
server_info: ('Linux', 'RHEL', 5.2, 'Melissa Jones')
latlon: (35.99, -72.39)

To specify a one-element tuple, use a trailing comma, otherwise it will be interpreted as a
single object:
TIP

color = 'red',

Chapter 4: Array Types © 2021 CJ Associates (rev1.0)

Introduction to Python 89
Iterable Unpacking

* Copy elements to variables
» Works with any array-like object

* More readable than numeric indexing
If you have a tuple like this:
my_date = 8, 1, 2014
You can access the elements with
print(my_date[0], my_date[1], my_date[2])

It’s not very readable though. How do you know which is the month and which is the day?

A better approach is unpacking, which is simply copying a tuple (or any other iterable) to a list of
variables:

month, day, year = my_date

Now you can use the variables and anyone reading the code will know what they mean. This is really
how tuples were designed to be used.

© 2021 CJ Associates (rev1.0) Chapter 4: Array Types

90 Introduction to Python

Example

iterable_unpacking.py
#!/usr/bin/env python
values = ['a", 'b', 'c']
X, y, z = values @

print(x, y, z)
print()

people = [
('Bill', 'Gates', 'Microsoft'),
('Steve', 'Jobs', 'Apple'),
('Paul', 'Allen', 'Microsoft'),
("Larry', 'Ellison', 'Oracle'),
('Mark', 'Zuckerberg', 'Facebook'),
('Sergey', 'Brin', 'Google'),
('Larry', 'Page', 'Google'),
('Linux', 'Torvalds', 'Linux'),

]

for row in people:
first_name, last name, =row @ ®
print(first_name, last_name)

print()

for first_name, last_name, _ in people: @
print(first_name, last_name)
print()

extended unpacking

valves = ['a', 'b', 'c¢', 'd', 'e', 'f']
X, Yy, *z = values

print(x, y, z)

X, *y, z = values
print(x, y, z)

*X, Yy, z = values
print(x, y, z)

® unpack values (which is an iterable) into individual variables

@ unpack row into variables

Chapter 4: Array Types © 2021 CJ Associates (rev1.0)

Introduction to Python

® _is used as a "junk" variable that won’t be used

@ a for loop unpacks if there is more than one variable

iterable_unpacking.py
abec

Bill Gates
Steve Jobs

Paul Allen
Larry Ellison
Mark Zuckerberg
Sergey Brin
Larry Page
Linux Torvalds

Bill Gates
Steve Jobs

Paul Allen
Larry Ellison
Mark Zuckerberg
Sergey Brin
Larry Page
Linux Torvalds

b ['C" ldl, lell Ifl
[lbl, |C|’ ldl, lel]
d e

d
d
[l l, lbl, lcl’ Idl]

© 2021 CJ Associates (rev1.0)

91

Chapter 4: Array Types

92 Introduction to Python

Nested sequences

 Lists and tuples may contain other lists and tuples
» Use multiple brackets to specify higher dimensions

* Depth of nesting limited only by memory

Lists and tuples can contain any type of data, so a two-dimensional array can be created using a list of
lists. A typical real-life scenario consists of reading data into a list of tuples.

There are many combinations - lists of tuples, lists of lists, etc.

To initialize a nested data structure, use nested brackets and parentheses, as needed.

Chapter 4: Array Types © 2021 CJ Associates (rev1.0)

Introduction to Python 93

Example

nested_sequences.py

#!/usr/bin/env python

people = [
('Melinda', 'Gates', 'Gates Foundation'),
('Steve', 'Jobs', 'Apple'),
("Larry', 'Wall', 'Perl'),
('Paul', 'Allen', 'Microsoft'),
("Larry', 'Ellison', 'Oracle'),
('Bill", 'Gates', 'Microsoft'),
('Mark', 'Zuckerberg', 'Facebook'),
('Sergey', 'Brin', 'Google'),
('Larry', 'Page', 'Google'),
('Linus', 'Torvalds', 'Linux'),

]

for person in people: @
print(person[@], person[1])
print('-" * 60)

for person in people:
first_name, last_name, product = person @
print(first_name, last_name)

print('-" * 60)

for first_name, last_name, product in people: ®
print(first_name, last_name)
print('-" * 60)
@ person is a tuple
@ unpack person into variables

® if there is more than one variable in a for loop, each element is unpacked

© 2021 CJ Associates (rev1.0) Chapter 4: Array Types

94 Introduction to Python

nested_sequences.py

Melinda Gates
Steve Jobs
Larry Wall

Paul Allen
Larry Ellison
Bill Gates

Mark Zuckerberg
Sergey Brin
Larry Page
Linus Torvalds
Melinda Gates
Steve Jobs
Larry Wall

Paul Allen
Larry Ellison
Bill Gates

Mark Zuckerberg
Sergey Brin
Larry Page
Linus Torvalds
Melinda Gates
Steve Jobs
Larry Wall

Paul Allen
Larry Ellison
Bill Gates

Mark Zuckerberg
Sergey Brin
Larry Page
Linus Torvalds

Chapter 4: Array Types © 2021 CJ Associates (rev1.0)

Introduction to Python 95
Operators and keywords for sequences

* Operators + *

» Keywords del in not in
del deletes an entire string, list, or tuple. It can also delete one element, or a slice, from a list. del
cannot remove elements of strings and tuples, because they are immutable.
in returns True if the specified object is an element of the sequence.
not in returns True if the specified object is not an element of the sequence.
+ adds one sequence to another

* multiplies a sequence (i.e., makes a bigger sequence by repeating the original).

x in s #note 0 x can be any Python object
s2=s1%*3
s3 =s1 +5s2

© 2021 CJ Associates (rev1.0) Chapter 4: Array Types

96

Example

sequence_operators.py

#!/usr/bin/env python

colors = ["red", "blue", "green", "yellow", "brown", "black"]

months = (
llJan"’ "Febll, "Mar"’ llApr", "May“’ "JUﬂ",
IIJU']-"’ IIAUg", llSep"’ IIOCtIII IINOV"’ "DeC"'
)

print("yellow in colors: ", ("yellow" in colors)) @
print("pink in colors: ", ("pink" in colors))

print("colors: ", ",".join(colors)) @

del colors[4] # remove brown ®

print("removed 'brown':", ",".join(colors))

colors.remove('green') @

print("removed 'green':", ",".join(colors))
sum_of _lists = [True] + [True] + [False] ®
print("sum of lists:", sum_of_lists)

product = [True] * 5 ®

print("product of lists:", product)

@ Test for membership in list

@ Concatenate iterable using ", " as delimiter
® Permanently remove element with index 4
@ Remove element by value

® Add 3 lists together; combines all elements

® Multiply a list; replicates elements

Chapter 4: Array Types

Introduction to Python

© 2021 CJ Associates (rev1.0)

Introduction to Python 97

sequence_operators.py

yellow in colors: True

pink in colors: False

colors: red,blue,green,yellow,brown,black
removed 'brown': red,blue,green,yellow,black
removed 'green': red,blue,yellow,black

sum of lists: [True, True, False]

product of lists: [True, True, True, True, True]

© 2021 CJ Associates (rev1.0) Chapter 4: Array Types

98 Introduction to Python
Functions for all sequences

* Many builtin functions expect a sequence

* Syntax
n = len(s)
n = min(s)
n = max(s)
n = sum(s)

s2 = sorted(s)
s2 = reversed(s)
s = zip(s1,s2,...)

Many builtin functions accept a sequence as the parameter. These functions can be applied to a list,
tuple, dictionary, or set.
len(s) returns the number of elements in s (the number of characters in a string).

min(s) and max(s) return the smallest and largest values in s. Types in s must be similar — mixing
strings and numbers will raise an error.

sorted(s) returns a sorted list of any sequence s.

min(), max(), and sorted() accept a named parameter key, which specifies a key
function for converting each element of s to the value wanted for comparison. In other
words, the key function could convert all strings to lower case, or provide one property
of an object.

NOTE

sum(s) returns the sum of all elements of s, which must all be numeric.
reversed(s) returns an iterator (not a list) that can loop through s in reverse order.

zip(s1,s2,...) returns an iterator consisting of (s1[0],s2[0]),(s1[1], s2[1]), ...). This can be used to "pivot"
rows and columns of data.

Chapter 4: Array Types © 2021 CJ Associates (rev1.0)

Introduction to Python 99

Example

sequence_functions.py

#!/usr/bin/env python

colors = ["red", "blue", "green", "yellow", "brown", "black"]
months = (

“Jan", "Feb", "Mar", "Apr", "May", "Jun",

“Jul", "Aug", "Sep", "Oct", "Nov", "Dec",
)

print("colors: len is {}; min is {}; max is {}".format(len(colors), min(colors),
max(colors)))

print("months: len is {}; min is {}; max is {}".format(len(months), min(months),
max(months)))

print()

print("sorted:", end=" ")

for m in sorted(colors): @
print(m, end=" ")

print()

phrase = ('dog', 'bites', 'man')
print(" ".join(reversed(phrase))) @
print()

first_names = "Bill Bill Dennis Steve Larry".split()
last_names = "Gates Joy Richie Jobs Ellison".split()

full_names = zip(first_names, last_names) &
print("full_names:", full_names)
print()

for first_name, last_name in full_names:
print("{} {}".format(first_name, last_name))

@ sorted() returns a sorted list
@ reversed() returns a reversed iterator

® zip() returns an iterator of tuples created from corresponding elements

© 2021 CJ Associates (rev1.0) Chapter 4: Array Types

100 Introduction to Python

sequence_functions.py

colors: len is 6; min is black; max is yellow
months: 1len is 12; min is Apr; max is Sep

sorted: black blue brown green red yellow
man bites dog

full_names: <zip object at 0x7f7fb01d24bo>

Bill Gates
Bill Joy
Dennis Richie
Steve Jobs
Larry Ellison

Chapter 4: Array Types © 2021 CJ Associates (rev1.0)

Introduction to Python 101
Using enumerate()

* Numbers items beginning with 0 (or specified value)

» Returns enumerate object that provides a virtual list of tuples

To get the index of each list item, use the builtin function enumerate(s). It returns an enumerate
object.

for t in enumerate(s):
print(t[0],t[1])

for i,item in enumerate(s):
print(i,item)

for i,item in enumerate(s,1)
print(i,item)

When you iterate through the following list with enumerate():
[x,y,2]

you get this (virtual) list of tuples:
[(0,x),(1,y),(2,2)]

You can give enumerate() a second argument, which is added to the index. This way you can start
numbering at 1, or any other place.

© 2021 CJ Associates (rev1.0) Chapter 4: Array Types

102 Introduction to Python

Example

enumerate.py

#!/usr/bin/env python

colors = "red blue green yellow brown black".split()

months = "Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec".split()

for i, color in enumerate(colors): @
print(i, color)

print()

for num, month in enumerate(months, 1): @
print("{} {}".format(num, month))

® enumerate() returns iterable of (index, value) tuples

@ Second parameter to enumerate is added to index

Chapter 4: Array Types © 2021 CJ Associates (rev1.0)

Introduction to Python 103

enumerate.py

red
blue
green
yellow
brown
black

Ul BB WwWN -2

Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
10 Oct
11 Nov
12 Dec

O 00 N O U1 &~ W N =

© 2021 CJ Associates (rev1.0) Chapter 4: Array Types

104 Introduction to Python
The range() function

e Provides (virtual) list of numbers
» Slice-like parameters

e Syntax

range(stop)
range(start, stop)
range(start, stop, step)

The range() function returns a range object, that provides a list of numbers when iterated over. The
parameters to range() are similar to the parameters for slicing (start, stop, step).

This can be useful to execute some code a fixed number of times.

Chapter 4: Array Types © 2021 CJ Associates (rev1.0)

Introduction to Python 105

Example

using_ranges.py

#!/usr/bin/env python

print("range(1, 6): ", end=" ")

for x in range(1, 6): @
print(x, end=" ")

print()

print("range(6): ", end=" ")
for x in range(6): @

print(x, end=" ")
print()

print("range(3, 12): ", end=" ")

for x in range(3, 12): ®
print(x, end=" ")

print()

print("range(5, 30, 5): ", end=" ")

for x in range(5, 30, 5): @
print(x, end=" ")

print()

print("range(10, @, -1): ", end=" ")

for x in range(10, 0, -1): ®
print(x, end=" ")

print()

@ Start=1, Stop=6 (1 through 5)
@ Start=0, Stop=6 (0 through 5)
® Start=3, Stop=12 (3 through 11)

@ Start=5, Stop=30, Step=5 (5 through 25 by 5)
® Start=10, Stop=1, Step=-1 (10 through 1 by 1)

© 2021 CJ Associates (rev1.0) Chapter 4: Array Types

106 Introduction to Python

using ranges.py

range(1, 6): 12345
range(6): 012345
range(3, 12): 345678910 1
range(5, 30, 5): 5 10 15 20 25

range(10, @, -1): 10987654321

Chapter 4: Array Types © 2021 CJ Associates (rev1.0)

Introduction to Python 107

List comprehensions

Shortcut for a for loop

Optional if clause
* Always returns list

* Syntax

[EXPR for VAR in SEQUENCE if EXPR]

A list comprehension is a Python idiom that creates a shortcut for a for loop. A loop like this:

results = []
for var in sequence:
results.append(expr) # where expr involves var

can be rewritten as

results = [expr for var in sequence]

A conditional if may be added:

results = [expr for var in sequence if expr]

The loop expression can be a tuple. You can nest two or more for loops.

© 2021 CJ Associates (rev1.0) Chapter 4: Array Types

108

Introduction to Python

Example

list_comprehensions.py

#!/usr/bin/env python

fruits = ['watermelon', 'apple', 'mango’, 'kiwi', 'apricot', 'lemon', 'quava']

ufruits
afruits

[fruit.upper() for fruit in fruits] ©)
[fruit.title() for fruit in fruits if fruit.startswith('a')] @

print("ufruits:", ufruits)
print("afruits:", afruits)
print()

values = [2, 42, 18, 39.7, 92, '14"', "boom", ['a', 'b', 'c']]

doubles = [v * 2 for v in values] ®

print("doubles:", doubles, '\n')

nums

[x for x in values if isinstance(x, int)] @

print(nums, '\n')

dirty_strings = [" Gronk ', '"PULABA i, | floog']

clean = [d.strip().lower() for d in dirty_strings]
for ¢ in clean:

print(">{}<".format(c), end=" ")
print("\n")

suits
ranks

"Clubs', 'Diamonds', 'Hearts', 'Spades'
'23456789103QKA".split()

deck = [(rank, suit) for suit in suits for rank in ranks] ®

for rank, suit in deck:
print("{}-{}".format(rank, suit))

Chapter 4: Array Types

© 2021 CJ Associates (rev1.0)

Introduction to Python 109

@ Simple transformation of all elements

@ Transformation of selected elements only
® Any kind of data is OK

@ Select only integers from list

® More than one for is OK

list_ comprehensions.py

ufruits: ['WATERMELON', 'APPLE', 'MANGO', 'KIWI', 'APRICOT', 'LEMON', 'GUAVA']
afruits: ['Apple', '"Apricot']

doubles: [4, 84, 36, 79.4, 184, '1414', 'boomboom', ['a', 'b', 'c', 'a', 'b', 'c']]
[2, 42, 18, 92]
>gronk< >pulaba< >floog<

2-Clubs
3-Clubs
4-Clubs
5-Clubs
6-Clubs
7-Clubs
8-Clubs
9-Clubs
10-Clubs
J-Clubs
Q-Clubs
K-Clubs
A-Clubs
2-Diamonds
3-Diamonds
4-Diamonds
5-Diamonds
6-Diamonds
7-Diamonds
8-Diamonds
9-Diamonds

etc etc

© 2021 CJ Associates (rev1.0) Chapter 4: Array Types

110 Introduction to Python
Generator Expressions

 Similar to list comprehensions
* Lazy evaluations — only execute as needed

e Syntax

(EXPR for VAR in SEQUENCE if EXPR)

A generator expression is very similar to a list comprehension. There are two major differences, one
visible and one invisible.

The visible difference is that generator expressions are created with parentheses rather than square
brackets. The invisible difference is that instead of returning a list, they return an iterable object.

The object only fetches each item as requested, and if you stop partway through the sequence; it never
fetches the remaining items. Generator expressions are thus frugal with memory.

Chapter 4: Array Types © 2021 CJ Associates (rev1.0)

Introduction to Python 111
Example

generator_expressions.py

#!/usr/bin/env python

fruits = ['watermelon', 'apple', 'mango', 'kiwi', 'apricot', 'lemon', 'quava']

ufruits = (fruit.upper() for fruit in fruits) @

afruits = (fruit.title() for fruit in fruits if fruit.startswith('a"))
print("ufruits:", " ".join(ufruits))

print("afruits:", " ".join(afruits))

print()

values = [2, 42, 18, 92, "boom", ['a', 'b', 'c'1]
doubles = (v * 2 for v in values)

print("doubles:", end=" ")
for d in doubles:

print(d, end=" ")
print("\n")

nums = (int(s) for s in values if isinstance(s, int))
for n in nums:

print(n, end=" ")
print("\n")

dirty_strings = [" Gronk ", '"PULABA ' floog']

clean = (d.strip().lower() for d in dirty_strings)
for ¢ in clean:
print(">{}<".format(c), end=" ")
print("\n")
powers = ((i, i ** 2, i ** 3) for i in range(1, 11))
for num, square, cube in powers:
print("{:2d} {:3d} {:4d}".format(num, square, cube))
print()

@ These are all exactly like the list comprehension example, but return generators rather than lists

© 2021 CJ Associates (rev1.0) Chapter 4: Array Types

112 Introduction to Python

generator_expressions.py

ufruits: WATERMELON APPLE MANGO KIWI APRICOT LEMON GUAVA
afruits: Apple Apricot

doubles: 4 84 36 184 boomboom ['a', 'b', 'c', 'a', 'b', 'c']
2 42 18 92
>gronk< >pulaba< >floog<

1 1 1
2 4 8
39 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

Chapter 4: Array Types © 2021 CJ Associates (rev1.0)

Introduction to Python 113

Chapter 4 Exercises

Exercise 4-1 (pow2.py)
Print out all the powers of 2 from 2° through 2*'.

Use the ** operator, which raises a number to a power.

For exercises 4-2 and 4-3, start with the file sequences.py, which has the lists ctemps

NOTE
and fruits already typed in. You can put all the answers in sequences.py

Exercise 4-2 (sequences.py)

ctemps is a list of Celsius temperatures. Loop through ctemps, convert each temperature to Fahrenheit,
and print out both temperatures.

Exercise 4-3 (sequences.py)

Use a list comprehension to copy the list fruits to a new list named clean_fruits, with all fruits in
lower case and leading/trailing white space removed. Print out the new list.

HINT: Use chained methods (x.spam().ham())

© 2021 CJ Associates (rev1.0) Chapter 4: Array Types

114 Introduction to Python

Exercise 4-4 (sieve.py)

FOR ADVANCED STUDENTS

The "Sieve of Eratosthenes" is an ancient algorithm for finding prime numbers. It works by starting at
2 and checking each number up to a specified limit. If the number has been marked as non-prime, it is
skipped. Otherwise, it is prime, so it is output, and all its multiples are marked as non-prime.

Write a program to implement this algorithm. Specify the limit (the highest number to check) on the
script’s command line. Supply a default if no limit is specified.

Initialize a list (maybe named is_prime) to the size of the limit plus one (use * to multiply a single-item
list). All elements should be set to True.

Use two nested loops.

The outer loop will check each value (element of the array) from 2 to the upper limit. (use the range())
function.

If the element has a True value (is prime), print out its value. Then, execute a second loop iterates
through all the multiples of the number, and marks them as False (i.e., non-prime).

No action is needed if the value is False. This will skip the non-prime numbers.

TIP Use range() to generate the multiples of the current number.

In this exercise, the value of the element is either True or False —the index is the

NOTE
number be checked for primeness.

See next page for the pseudocode for this program:

Chapter 4: Array Types © 2021 CJ Associates (rev1.0)

Introduction to Python 115

Pseudocode for sieve.py

if # command line args ==

get LIMIT from command line
else

set LIMIT to 50

Initialize IS_PRIMES list to size LIMIT+1, with all TRUE values

for NUM from 2 to LIMIT+1
if IS_PRIME[NUM]
output NUM
for M from NUM to LIMIT+1, counting by NUM
IS_PRIME[M] = FALSE

© 2021 CJ Associates (rev1.0) Chapter 4: Array Types

116 Introduction to Python

Chapter 4: Array Types © 2021 CJ Associates (rev1.0)

Introduction to Python 117

Chapter 5: Working with Files

Objectives

* Reading a text file line-by-line
* Reading an entire text files
* Reading all lines of a text file into an array

* Writing to a text file

© 2021 CJ Associates (rev1.0) Chapter 5: Working with Files

118 Introduction to Python

Text file I/O

Create a file object with open
 Specify modes: read/write, text/binary
» Read or write from file object

* Close file object (or use with block)

Python provides a file object that is created by the built-in open() function. From this file object you
can read or write data in several different ways. When opening a file, you specify the file name and the
mode, which says whether you want to read, write, or append to the file, and whether you want text or
binary (raw) processing.

This chapter is about working with generic files. For files in standard formats, such as

NOTE XML, CSV, YAML, JSON, and many others, Python has format-specific modules to read
them.

Chapter 5: Working with Files © 2021 CJ Associates (rev1.0)

Introduction to Python 119

Opening a text file

Specify the file name and the mode
» Returns a file object
* Mode can be read or write

* Specify "b" for binary (raw) mode

Omit mode for reading

Open a text file with the open() command. Arguments are the file name, which may be specified as a
relative or absolute path, and the mode. The mode consists of "r" for read, "w" for write, or "a" for

non

append. To open a file in binary mode, add "b" to the mode, as in "rb", "wb", or "ab".

If you omit the mode, "r" is the default.

Example

ty = open("tyger.txt","r") open for reading in text mode

ty = open("tyger.txt") open for reading in text mode (default mode)

junk = open("junk.dat","rb") open for reading in raw mode

stf = open("stuff.txt","w") open for writing in text mode

stf = open("stuff.txt","x") open for writing in text mode, fail if file exists
moju = open("morejunk.dat","wb") open for writing in raw mode

config = open("spam.cfg","a") open for append in text mode

The fileinput module in the standard library makes it easy to loop over each line in all
TIP files specified on the command line, or STDIN if no files are specified. This avoids having
to open and close each file.

© 2021 CJ Associates (rev1.0) Chapter 5: Working with Files

120 Introduction to Python

The with block

* Provides "execution context"
» Automagically closes file object

* Not specific to file objects

Because it is easy to forget to close a file object, you can use a with block to open your file. This will
automatically close the file object when the block is finished. The syntax is

with open(filename, mode) as fileobject:
process fileobject

Chapter 5: Working with Files © 2021 CJ Associates (rev1.0)

Introduction to Python 121
Reading a text file

* Iterate through file with for/in
for line in file_in
» Use methods of the file object

file_in.readlines() read all lines from file_ in

file_in.read() read all of file_in

file_in.read(n) read n characters from file in text mode; n bytes from
file_in in binary mode

file_in.readline() read next line from file_in

The easiest way to read a file is by looping through the file object with a for/in loop. This is possible
because the file object is an iterator, which means the object knows how to provide a sequence of
values.

You can also read a text file one line or multiple lines at a time. readline() reads the next available
line; readlines() reads all lines into a list.

read() will read the entire file; read(n) will read n bytes from the file (n characters if in text mode).

readline() will read the next line from the file.

© 2021 CJ Associates (rev1.0) Chapter 5: Working with Files

122 Introduction to Python

Example

read_tyger.py

#!/usr/bin/env python

with open("../DATA/tyger.txt", "r") as tyger_in: @
for line in tyger_in: @
print(line, end=""') ®
@ tyger_in is return value of openc(...)
@ tyger_in is a generator, returning one line at a time

® the line already has a newline, so print() does not need one

Chapter 5: Working with Files © 2021 CJ Associates (rev1.0)

Introduction to Python 123

read _tyger.py

The Tyger

Tyger! Tyger! burning bright

In the forests of the night,

What immortal hand or eye

Could frame thy fearful symmetry?

In what distant deeps or skies
Burnt the fire of thine eyes?
On what wings dare he aspire?
What the hand dare seize the fire?

And what shoulder, & what art,

Could twist the sinews of thy heart?
And when thy heart began to beat,
What dread hand? & what dread feet?

What the hammer? what the chain?
In what furnace was thy brain?
What the anvil? what dread grasp
Dare its deadly terrors clasp?

When the stars threw down their spears
And water'd heaven with their tears,
Did he smile his work to see?

Did he who made the Lamb make thee?

Tyger! Tyger! burning bright
In the forests of the night,
What immortal hand or eye

Dare frame thy fearful symmetry?

by William Blake

© 2021 CJ Associates (rev1.0) Chapter 5: Working with Files

124 Introduction to Python

Example

reading_files.py

#!/usr/bin/env python
FILE_NAME = '../DATA/mary.txt'

mary_in = open(FILE_NAME) @
read file...
mary_in.close() @

with open(FILE_NAME) as mary_in: &
for raw_line in mary_in: @
line = raw_line.rstrip() ®
print(line)
print('-" * 60)

with open(FILE_NAME) as mary_in:
contents = mary_in.read() ®
print("NORMAL:")
print(contents)
print("=" * 20)
print("RAW:")
print(repr(contents)) @
print('-" * 60)

with open(FILE_NAME) as mary_in:
lines_with_nl = mary_in.readlines()
print(lines_with_nl)

print('-" * 60)

with open(FILE_NAME) as mary_in:
lines_without_nl = mary_in.read().splitlines() ©
print(lines_without_nl)

@ open file for reading

@ close file (easy to forget to do this!)

® open file for reading

@ iterate over lines in file (line retains \n)

® rstrip(\n\r') removes whitespace (including \r or \n) from end of string
® read entire file into one string

@ print string in "raw" mode

Chapter 5: Working with Files © 2021 CJ Associates (rev1.0)

Introduction to Python 125

readlines() reads all lines into an array

© splitlines() splits string on '\n' into lines

© 2021 CJ Associates (rev1.0) Chapter 5: Working with Files

126 Introduction to Python

reading files.py

Mary had a little lamb,

Its fleece was white as snow,
And everywhere that Mary went
The lamb was sure to go
NORMAL :

Mary had a little lamb,

Its fleece was white as snow,
And everywhere that Mary went
The lamb was sure to go

RAW:

'Mary had a little lamb,\nIts fleece was white as snow,\nAnd everywhere that Mary
went\nThe lamb was sure to go\n'

['Mary had a little lamb,\n', 'Its fleece was white as snow,\n', 'And everywhere that
Mary went\n', 'The lamb was sure to go\n']

['Mary had a little lamb,', 'Its fleece was white as snow,', 'And everywhere that Mary
went', 'The lamb was sure to go']

Chapter 5: Working with Files © 2021 CJ Associates (rev1.0)

Introduction to Python 127
Writing to a text file

* Use write() or writelines()

* Add \n manually

To write to a text file, use the write() function to write a single string; or writelines() to write a list of
strings.

writelines() will not add newline characters, so make sure the items in your list already have them.

Example

write_file.py

#!/usr/bin/env python

states = (
'Virginia',
"North Carolina',
'Washington',
"New York',
'Florida’,
'Ohio’',

)

with open("states.txt", "w") as states_out: @D
for state in states:
states_out.write(state + "\n") @

® "w" opens for writing, "a" for append

@ write() does not add \n automatically

© 2021 CJ Associates (rev1.0) Chapter 5: Working with Files

128 Introduction to Python

write_file.py

cat states.txt (Windows: type states.txt)

Virginia

North Carolina
Washington

New York
Florida

Ohio

"writelines" should have been called "writestrings"

Chapter 5: Working with Files © 2021 CJ Associates (rev1.0)

Introduction to Python

Table 9. File Methods
Function

f.close()

f.flush()

s =fread(n)
s =fread()

s = f.readline()
s = freadline(n)

m = f.readlines()

f.seek(n)
f.seek(n,w)

f.tell)
f.write(s)

f.writelines(m)

© 2021 CJ Associates (rev1.0)

129

Description
close file f
write out buffered data to file f

read size bytes from file f into string s; if n is < 0, or omitted,
reads entire file

read one line from file f into string s. If n is specified, read
no more than n characters

read all lines from file f into list m

position file f at offset n for next read or write; if argument
w (whence) is omitted or 0, offset is from beginning; if 1,
from current file position, if 2, from end of file

return current offset from beginning of file
write string s to file f

write list of strings m to file f; does not add line terminators

Chapter 5: Working with Files

130 Introduction to Python

Chapter 5 Exercises

Exercise 5-1 (line_no.py)

Write a program to display each line of a file preceded by the line number. Allow your program to
process one or more files specified on the command line. Be sure to reset the line number for each file.

TIP Use enumerate().

Test with the following commands:

python line_no.py DATA/tyger.txt
python line_no.py DATA/parrot.txt DATA/tyger.txt

Test with other files, as desired

Exercise 5-2 (alt_lines.py)

Write a program to create two files, a.txt and b.txt from the file alt.txt. Lines that start with 'a' go in
a.txt; the other lines (which all start with 'b") go in b.txt. Compare the original to the two new files.

Exercise 5-3 (count_alice.py, count_words.py)

A. Write a program to count how many lines of alice.txt contain the word "Alice". (There should be
392).

TIP Use the in operator to test whether a line contains the word "Alice"
B. Modify count_alice.py to take the first command line parameter as a word to find, and the

remaining parameters as filenames. For each file, print out the file name and the number of lines
that contain the specified word. Test thoroughly

FOR ADVANCED STUDENTS (icount_words.py) Modify count_words.py to make the search case-
insensitive.

Chapter 5: Working with Files © 2021 CJ Associates (rev1.0)

Introduction to Python 131

Chapter 6: Dictionaries and Sets

Objectives

* Creating dictionaries

 Using dictionaries for mapping and counting

Iterating through key-value pairs

Reading a file into a dictionary
* Counting with a dictionary

» Using sets

© 2021 CJ Associates (rev1.0) Chapter 6: Dictionaries and Sets

132 Introduction to Python
About dictionaries

e A collection

Associates keys with values

called "hashes", "hash tables" or "associative arrays" in other languages

Rich set of functions available

A dictionary is a collection that contains key-value pairs. Dictionaries are not sequential like lists,
tuples, and strings; they function more as a lookup table. They map one value to another.

The keys must be immutable - lists and dictionaries may not be used as keys. Any immutable type may
be a key, although typically keys are strings.

Prior to version 3.6, the elements of a dictionary are in no particular order. Starting with 3.6, elements
are stored in the order added. If you iterate over dictionary.items(), it will iterate in the order that the
elements were added.

Values can be any Python object - strings, numbers, tuples, lists, dates, or anything else.
For instance, a dictionary might

* map column names in a database table to their corresponding values
* map almost any group of related items to a unique identifier

* map screen names to real names

* map zip codes to a count of customers per zip code

* count error codes in a log file

* count image tags in an HTML file

Chapter 6: Dictionaries and Sets © 2021 CJ Associates (rev1.0)

Introduction to Python 133
When to use dictionaries?

* Mapping

» Counting

Dictionaries are very useful for mapping a set of keys to a corresponding set of values. You could have
a dictionary where the key is a candidate for office, and value is the state in which the candidate is
running, or the value could be an object containing many pieces of information about the candidate.

Dictionaries are also handy for counting. The keys could be candidates and the values could be the
number of votes each candidate received.

© 2021 CJ Associates (rev1.0) Chapter 6: Dictionaries and Sets

134 Introduction to Python

Creating dictionaries

* Create dictionaries with { } or dict()
* Create from (nearly) any sequence

» Add additional keys by assignment

To create a dictionary, use the dict() function or {}. The dictionary can be created empty, or you can
initialize it with one or more key/value pairs, separated by colons.
To add more keys, assign to the dictionary using square brackets.

Remember, braces are only used to create a dictionary; indexing uses brackets like all the other

container types. To get the value for a given key, specify the key with square brackets or use the
get() method.

Chapter 6: Dictionaries and Sets © 2021 CJ Associates (rev1.0)

Introduction to Python 135

Example

creating_dicts.py

#!/usr/bin/env python
d1 = dict() @

airports = {"IAD': 'Dulles', 'SEA': 'Seattle-Tacoma',K @
'RDU': 'Raleigh-Durham', 'LAX': 'Los Angeles'}

d2
d3

{}
dict(red=5, blue=10, yellow=1, brown=5, black=12) ®

pairs = [('Washington', 'Olympia'), ('Virginia', 'Richmond'),
('Oregon', 'Salem'), ('California', 'Sacramento')]

state_caps = dict(pairs) @

print(d3['red']) ®
print(airports['LAX"])

airports['SLC'] = 'Salt Lake City' ®

airports['LAX'] = 'Lost Angels' @
print(airports['SLC"])

© 2021 CJ Associates (rev1.0) Chapter 6: Dictionaries and Sets

136 Introduction to Python

@ create new empty dict

@ initialize dict with literal key/value pairs (keys can be any string, number or tuple)
® initialize dict with named parameters; keys must be valid identifier names

@ initialize dict with an iterable of pairs

® print value for given key

® assign to new key

@ overwrite existing key

creating dicts.py

5
Los Angeles
Salt Lake City

Chapter 6: Dictionaries and Sets © 2021 CJ Associates (rev1.0)

Introduction to Python

Table 10. Frequently used dictionary functions and operators

Function
len(D)

DIK]

DI[k] =v

del D[K]
D.clear()
kinD
knotin D
D.get(k[, x])
D.items()
D.update([b])
D.setdefault(k][, x])

Description

the number of elements in D

the element of D with key k

set D[k]tov

remove element from D whose key is k
remove all items from a dictionary

True if key k exists in D

True if key k does not exist in D

D[k] ifkin a, else x

return an iterator over (key, value) pairs
updates (and overwrites) key/value pairs from b

alk] if k in D, else x (also setting it)

Table 11. Less frequently used dictionary functions

Function

D.keys()

D.values()

D.copy(

D.has_key(k)
D.fromkeys(seq[, value])
D.pop(k[, x])
D.popitem()

© 2021 CJ Associates (rev1.0)

Description

return an iterator over the mapping’s keys

return an iterator over the mapping’s values

a (shallow) copy of D

True if a has D key Kk, else False (but use in)

Creates a new dictionary with keys from seq and values set to value
a[k] if kin D, else x (and remove k)

remove and return an arbitrary (key, value) pair

137

Chapter 6: Dictionaries and Sets

138 Introduction to Python

Getting dictionary values

* d[key]
* d.get(key,default-value)
* d.setdefault(key, default-value)

There are three main ways to get the value of a dictionary element, given the key.
Using the key as an index retrieves the corresponding value, or raises a KeyError.

The get() method returns the value, or a default value if the key does not exist. If no default value is
specified, and the key does not exist, get() returns None.

The setdefault() method is like get(), but if the key does not exist, adds the key and the default value to
the dictionary.

Use the in operator to test whether a dictionary contains a given key.

Chapter 6: Dictionaries and Sets © 2021 CJ Associates (rev1.0)

Introduction to Python 139

Example

getting_dict_values.py

#!/usr/bin/env python
d1 = dict()

airports = {'IAD': 'Dulles', 'SEA': 'Seattle-Tacoma',
'RDU': 'Raleigh-Durham', 'LAX': 'Los Angeles'}

d2
d3

{}
dict(red=5, blue=10, yellow=1, brown=5, black=12)

pairs = [('Washington', 'Olympia'), ('Virginia', 'Richmond'),
('Oregon', 'Salem'), ('California', 'Sacramento')]

state_caps = dict(pairs)

print(d3['red'])
print(airports['LAX"])

airports['SLC'] = 'Salt Lake City'
airports['LAX'] = "Lost Angels'
print(airports['SLC']) @

key = 'PSP'
if key in airports:

print(airports[key]) @

print(airports.get(key)) ®
print(airports.get(key, "NO SUCH AIRPORT')) @

print(airports.setdefault(key, 'Palm Springs')) ®
print(key in airports) ®

© 2021 CJ Associates (rev1.0) Chapter 6: Dictionaries and Sets

140 Introduction to Python

@ print value where key is 'SLC'

@ print key if key is in dictionary

® get value if key in dict, otherwise get None

@ get value if key in dict, otherwise get 'NO SUCH AIRPORT'

® get value if key in dict, otherwise get 'Palm Springs' AND set key
® check for key in dict

getting dict_values.py

5

Los Angeles
Salt Lake City
None

NO SUCH AIRPORT
Palm Springs
True

Chapter 6: Dictionaries and Sets © 2021 CJ Associates (rev1.0)

Introduction to Python 141
Iterating through a dictionary

» d.items() generates key/value tuples
» Key order
o before 3.6: not predictable

> 3.6 and later: insertion order
To iterate through tuples containing the key and the value, use the method DICT.items(). It generates
tuples in the form (KEY,VALUE).

Before 3.6, elements are retrieved in arbitrary order; beginning with 3.6, elements are retrieved in the
order they were added.

To do something with the elements in a particular order, the usual approach is to pass DICT.items() to
the sorted() function and loop over the result.

If you iterate through the dictionary itself (as opposed to dictionary.items()), you get just

TIP
the keys.

Example

iterating_over_dicts.py

#!/usr/bin/env python

airports = {'IAD': 'Dulles', 'SEA': 'Seattle-Tacoma',
'‘RDU': 'Raleigh-Durham', 'LAX': 'Los Angeles'}

for abbr, airport in airports.items(): @
print(abbr, airport)

@ items() returns a virtual list of key:value pairs

© 2021 CJ Associates (rev1.0) Chapter 6: Dictionaries and Sets

142 Introduction to Python

iterating over_dicts.py

IAD Dulles

SEA Seattle-Tacoma
RDU Raleigh-Durham
LAX Los Angeles

Chapter 6: Dictionaries and Sets © 2021 CJ Associates (rev1.0)

Introduction to Python 143
Reading file data into a dictionary

* Data must have unique key

» Key is one column, value can be string, number, list, or tuple (or anything else!)

To read a file into a dictionary, read the file one line at a time, splitting the line into fields as necessary.
Use a unique field for the key. The value can be either some other field, or a group of fields, as stored in
a list or tuple. Remember that the value can be any Python object.

Example

read_into_dict_of tuples.py

#!/usr/bin/env python
from pprint import pprint
knight_info = {} @
with open("../DATA/knights.txt") as knights_in:
for line in knights_in:
name, title, color, quest, comment = line.rstrip('\n\r').split(":")

knight_info[name] = title, color, quest, comment @

pprint(knight_info)
print()

for name, info in knight_info.items():
print(info[@], name)

print()
print(knight_info["Robin"'][2])

@ create empty dict

@ create new dict element with name as key and a tuple of the other fields as the value

© 2021 CJ Associates (rev1.0) Chapter 6: Dictionaries and Sets

144 Introduction to Python

read_into_dict_of tuples.py

{'Arthur': ('King', 'blue', 'The Grail', 'King of the Britons"'),
'Bedevere': ('Sir', 'red, no blue!', 'The Grail', 'AARRRRRRRGGGGHH'),
‘Galahad': ('Sir', 'red', 'The Grail', "'I could handle some more peril'"),
"Gawain': ('Sir", 'blue', 'The Grail', 'none'),
"Lancelot': ('Sir', 'blue', 'The Grail', '"It\'s too perilous!"'),
'Robin': ('Sir', 'yellow', 'Not Sure', 'He boldly ran away')}

King Arthur
Sir Galahad
Sir Lancelot
Sir Robin
Sir Bedevere
Sir Gawain

Not Sure

See also read_into_dict_of dicts.py and read_into_dict_of named_tuples.py in the

TIP
EXAMPLES folder.

Chapter 6: Dictionaries and Sets © 2021 CJ Associates (rev1.0)

Introduction to Python 145
Counting with dictionaries

* Use dictionary where key is item to be counted

e Value is number of times item has been seen.

To count items, use a dictionary where the key is the item to be counted, and the value is the number
of times it has been seen (i.e., the count).

The get() method is useful for this. The first time an item is seen, get can return 0; thereafter, it returns
the current count. Each time, add 1 to this value.

TIP Check out the Counter class in the collections module

Example

count_with_dict.py

#!/usr/bin/env python

counts = {} @
with open("../DATA/breakfast.txt") as breakfast_in:
for line in breakfast_in:
breakfast_item = line.rstrip('\n\r')
if breakfast_item in counts: @
counts[breakfast_item] = counts[breakfast_item] + 1 &
else:
counts[breakfast_item]

1®

for item, count in counts.items():
print(item, count)

@ create empty dict

@ create new dict element with name as key and a tuple of the other fields as the value

© 2021 CJ Associates (rev1.0) Chapter 6: Dictionaries and Sets

146 Introduction to Python

count_with_dict.py

spam 10
eggs 3
crumpets 1

As a short cut, you could check for the key and increment with a one-liner:

counts[breakfast_item] = counts.get(breakfast_item,0) + 1

Chapter 6: Dictionaries and Sets © 2021 CJ Associates (rev1.0)

Introduction to Python 147
About sets

* Find unique values

Check for membership

e Find union or intersection

Like a dictionary where all values are True
e Two kinds of sets
o set (mutable)

o frozenset (immutable)
A set is useful when you just want to keep track of a group of values, but there is no particular value
associated with them .

The easy way to think of a set is that it’s like a dictionary where the value of every element is True.
That is, the important thing is whether the key is in the set or not.

There are methods to compute the union, intersection, and difference of sets, along with some more
esoteric functionality.

As with dictionary keys, the values in a set must be unique. If you add a key that already exists, it
doesn’t change the set.

You could use a set to keep track of all the different error codes in a file, for instance.

© 2021 CJ Associates (rev1.0) Chapter 6: Dictionaries and Sets

148 Introduction to Python

Creating Sets

e Literal set: {item1, item2, ...}
» Use set() or frozenset()

¢ Add members with SET.add()
To create a set, use the set() constructor, which can be initialized with any iterable. It returns a set
object, to which you can then add elements with the add() method.

Create a literal set with curly braces containing a comma-separated list of the members. This won’t be
confused with a literal dictionary, because dictionary elements contain a colon separating the key and
value.

To create an immutable set, use frozenset(). Once created, you my not add or delete items from a
frozenset. This is useful for quick lookup of valid values.

Chapter 6: Dictionaries and Sets © 2021 CJ Associates (rev1.0)

Introduction to Python 149

Working with sets

* Common set operations

- adding an element

o deleting an element

o checking for membership

o computing
= union
= intersection
= symmetric difference (xor)

The most common thing to do with a set is to check for membership. This is accomplished with the in

operator. New elements are added with the add() method, and elements are deleted with the del
operator.

Intersection (&) of two sets returns a new set with members common to both sets.
Union (|) of two sets returns a new set with all members from both sets.

Xor (M) of two sets returns a new set with members that are one one set or the other, but not both.
(AKA symmetric difference)

Difference (-) of two sets returns a new set with members on the right removed from the set on the
left.

© 2021 CJ Associates (rev1.0) Chapter 6: Dictionaries and Sets

150 Introduction to Python

Example

set_examples.py

#!/usr/bin/env python

setl = {'red', 'blue', 'green', 'purple', 'green'} @
set2 = {"'green', 'blue', 'yellow', 'orange'}

set1.add('taupe') @

print(set1)
print(set2)

print(setl & set2) ®
print(setl | set2) @
print(setl A set2) ®
print(setl - set2) ®
print(set2 - setl)
print()

food = 'spam ham ham spam spam spam ham spam spam eggs cheese spam'.split()
food_set = set(food) @
print(food_set)

@ create literal set

@ add element to set (ignored if already in set)

® intersection of two sets

@ union of two sets

® XOR (symmetric difference); items in one set but not both
® Remove items in right set from left set

@ Create set from iterable (e.g., list)

Chapter 6: Dictionaries and Sets © 2021 CJ Associates (rev1.0)

Introduction to Python 151

set_examples.py

{'blue', 'green', 'red', 'purple', 'taupe'}

{'orange', 'blue', 'yellow', 'green'}

{'blue', 'green'}

{'blue', 'orange', 'yellow', 'green', 'red', 'purple', 'taupe'}
{'red', 'purple', 'taupe', 'orange', 'yellow'}

{"'taupe', 'red', 'purple'}

{'orange', 'yellow'}

{'spam', 'cheese', 'ham', 'eggs'}

© 2021 CJ Associates (rev1.0) Chapter 6: Dictionaries and Sets

152

Table 12. Set functions and methods
Function

min S

mnotin S

len(s)

S.add(m)

S.clear()

S.copy(

S-S2
S.difference(S2)

S.difference_update(S2)

S.discard(m)

S &S2
S.intersection(S2)

S.isdisjoint(S2)
S.issubset(S2)
S.issuperset(S2)

S.pop0)

S.remove(m)

SAS2
S.symmetric_difference(S2)

S.symmetric_difference_update(S2)

S| S2
S.union(S2)

S.update(S2)

Chapter 6: Dictionaries and Sets

Introduction to Python

Description

True if s contains member m

True if S does not contain member m

the number of items in S

Add member m to S (if S already contains m do nothing)
remove all members from S

a (shallow) copy of S

Return the set of all elements in S that are not in S2

Remove all members of S2 from S

Remove member m from S if it is a member. If m is not a
member, do nothing.

Return new set with all unique members of S and S2

Return True if S and S2 have no members in common
Return True is S is a subset of S2
Return True is S2 is a subset of S

Remove and return an arbitrary set element. Raises
KeyError if the set is empty.

Remove member m from a set; it must be a member.

Return all members in S or S2 but not both.
Update a set with the symmetric difference of itself and
another.

Return all members that are in S or S2

Update a set with the union of itself and S2

© 2021 CJ Associates (rev1.0)

Introduction to Python 153

Chapter 6 Exercises

Exercise 6-1 (scores.py)

A class of students has taken a test. Their scores have been stored in testscores.dat. Write a program
named scores.py to read in the data (read it into a dictionary where the keys are the student names
and the values are the test scores). Print out the student names, one per line, sorted, and with the
numeric score and letter grade. After printing all the scores, print the average score.

Grading Scale

95-100
A
89-94
B
83-88
C
75-82
D

<75

F

Exercise 6-2 (shell_users.py)

Using the file named passwd, write a program to count the number of users using each shell. To do
this, read passwd one line at a time. Split each line into its seven (colon-delimited) fields. The shell is
the last field. For each entry, add one to the dictionary element whose key is the shell.

When finished reading the password file, loop through the keys of the dictionary, printing out the shell
and the count.

Exercise 6-3 (common_{fruit.py)

Using sets, compute which fruits are in both fruitl.txt and fruit2.txt. To do this, read the files into sets
(the files contain one fruit per line) and find the intersection of the sets.

What if fruits are in both files, but one is capitalized and the other isn’t?

© 2021 CJ Associates (rev1.0) Chapter 6: Dictionaries and Sets

154 Introduction to Python

Exercise 6-4 (set_sieve.py)

FOR ADVANCED STUDENTS Rewrite sieve.py to use a set rather than a list to keep track of which
numbers are non-prime. This turns out to be easier — you don’t have to initialize the set, as you did

with the list.

Chapter 6: Dictionaries and Sets © 2021 CJ Associates (rev1.0)

Introduction to Python 155

Chapter 7: Functions

Objectives

* Creating functions

* Returning values from functions

* Passing required and optional positional parameters

* Passing required and optional named (keyword) parameters

* Understanding variable scope

© 2021 CJ Associates (rev1.0) Chapter 7: Functions

156 Introduction to Python
Defining a function

* Indent body
 Specify parameters

 Variables are local by default

Functions are one of Python’s callable types. Once a function is defined, it can be called from
anywhere.

Functions can take fixed or variable parameters and return single or multiple values.
Functions must be defined before they can be called.

Define a function with the def keyword, the name of the function, a (possibly empty) list of parameters
in parentheses, and a colon.

Chapter 7: Functions © 2021 CJ Associates (rev1.0)

Introduction to Python 157

Example

function_basics.py

#!/usr/bin/env python

def say_hello(): @
print("Hello, world")
print()
@

say_hello() ®

def get_hello():
return "Hello, world" @

h = get_hello() ®
print(h)
print()

def sqrt(num): ®
return num ** .5

sqrt(1234) @
sqrt(2)

o 3
1

print("m is {:.3f} n is {:.3f}".format(m, n))

© 2021 CJ Associates (rev1.0) Chapter 7: Functions

158 Introduction to Python

@ Function takes no parameters

@ If no return statement, return None
® Call function (arguments, if any, in ())
@ Function returns value

® Store return value in h

® Function takes exactly one argument

@ Call function with one argument

function_basics.py

Hello, world
Hello, world

m is 35.128 n is 1.414

Chapter 7: Functions © 2021 CJ Associates (rev1.0)

Introduction to Python 159
Returning values

* Use the return statement

» Return any Python object
To return a value from a function, use the return statement. It can return any Python object, including
scalar values, lists, tuple, and dictionaries.

return without a value returns None.

Example

return @

return 5 @

return x ®

return name,quest,color @

@ return None
@ return integer 5
® return object x

@ return tuple of values

TIP Remember that return is a statement, not a function.

© 2021 CJ Associates (rev1.0) Chapter 7: Functions

160 Introduction to Python
Function parameters

* Four kinds of parameters
> Required positional
o Optional positional
o Required named (AKA keyword-only)
o Optional named

» No type checking

When defining a function, you need to specify the parameters that the function expects. There are four
ways to do this, as described below. Parameters must be specified in the below order (i.e., fixed,
optional, keyword-only, keyword).

Required parameters may have default values.

Chapter 7: Functions © 2021 CJ Associates (rev1.0)

Introduction to Python 161

Positional parameters

Required positional parameters

Specify one or more positional parameters. The interpreter will then expect exactly that many
parameters. Positional parameters are available via their names.

def spam(a,b,c):
function body

This function expects three parameters, which can be of any Python data type.

Positional parameters can have default values, in which case the parameters can be omitted when the
function is called.

© 2021 CJ Associates (rev1.0) Chapter 7: Functions

162 Introduction to Python

Optional positional parameters

Prefix a parameter with one asterisk to accept any number of positional parameters. The parameter
name will be a tuple of all the values.

def eggs(*params):
function body

This function will take any number of arguments, which are then available in the tuple params.

Chapter 7: Functions © 2021 CJ Associates (rev1.0)

Introduction to Python 163

Named parameters

Keyword-only parameters (required named parameters)

Keyword-only parameters are required parameters with specific names that come after optional
parameters, but before optional named parameters. Keyword-only parameters are available in the
function via their names. This is in comparison to normal keyword parameters, which are all grouped
into a dictionary.

If the function doesn’t require optional parameters, use a single "' character as a placeholder after any
fixed parameters.

def spam(*, ham=True, eggs=5):
function body

The pandas read_csv() method is a great example of a function where named parameters are a good
fit. There are over twenty possible parameters, and it would be difficult for users to provide all of them
with every call, so it has named parameters, which all have reasonable defaults. The only required
parameter is the name of the file to read.

pandas.read_csv = read_csv(filepath_or_buffer, sep=","', delimiter=None, header="infer',
names=None, index_col=None, usecols=None, squeeze=False, prefix=None,
mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None,
false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None,
keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True,
parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None,
dayfirst=False, iterator=False, chunksize=None, compression="infer', thousands=None,
decimal=b'."', lineterminator=None, quotechar='""', quoting=0, escapechar=None,
comment=None, encoding=None, dialect=None, tupleize_cols=False, error_bad_lines=True,
warn_bad_lines=True, skipfooter=0, skip_footer=0, doublequote=True,
delim_whitespace=False, as_recarray=False, compact_ints=False, use_unsigned=False,
low_memory=True, buffer_lines=None, memory_map=False, float_precision=None)

© 2021 CJ Associates (rev1.0) Chapter 7: Functions

164 Introduction to Python

Keyword parameters (optional named parameters)

Specify optional named parameters. Prefix the parameter with two asterisks. The parameter is a
dictionary of the names and values passed in as "name=value" pairs.

def spam(**kw):
function body

This function takes any number of keyword arguments, which are available in the dictionary kw:

spam(name="bob",grade=10)

Chapter 7: Functions © 2021 CJ Associates (rev1.0)

Introduction to Python 165

Example

function_parameters.py

#!/usr/bin/env python

def fun_one(): @
print("Hello, world")

print("fun_one():", end=" ")
fun_one()
print()

def fun_two(n): @
return n ** 2

X = fun_two(5)
print("fun_two(5) is {}\n".format(x))

def fun_three(count=3): ®
for _ in range(count):
print("spam", end=" ")
print()

fun_three()
fun_three(10)
print()

def fun_four(n, *opt): @
print("fun_four():")
print("n is ", n)
print("opt is", opt)
print('-" * 20)

fun_four('apple')
fun_four('apple', "blueberry", "peach", "cherry")

def fun_five(*, spam=0, eggs=0): ®
print("fun_five():")

© 2021 CJ Associates (rev1.0) Chapter 7: Functions

166 Introduction to Python

print("spam is:", spam)
print("eggs is:", eggs)
print()

fun_five(spam=1, eggs=2)
fun_five(eggs=2, spam=2)
fun_five(spam=1)
fun_five(eggs=2)
fun_five()

def fun_six(**named_args): ®
print("fun_six():")
for name in named_args:
print(name, "==> ", named_args[name])

fun_six(name="Lancelot", quest="Grail", color="red")

@ no parameters

@ one required parameter

® one required parameter with default value
@ one fixed, plus optional parameters

® keyword-only parameters

® keyword (named) parameters

Chapter 7: Functions © 2021 CJ Associates (rev1.0)

Introduction to Python 167

function_parameters.py

fun_one(): Hello, world
fun_two(5) is 25

spam spam Spam
Spam Spam Spam Spam Spam Spam Spam Spam Spam Spam

fun_four():

n is apple

opt is ()

fun_four():

n is apple

opt is ('blueberry', 'peach', 'cherry")

fun_five():
spam is: 1
eggs is: 2
fun_five():
spam is: 2
eggs is: 2
fun_five():
spam is: 1
eggs is: 0
fun_five():
spam is: 0
eggs is: 2
fun_five():
spam is: 0
eggs is: 0
fun_six():

name ==> Lancelot
quest ==> Grail
color ==> red

© 2021 CJ Associates (rev1.0) Chapter 7: Functions

168 Introduction to Python

Variable scope

» Assignment inside function creates local variables
» Parameters are local variables

 All other variables are global

When you assign to a variable in a function, that variable is local - it is only visible within the function.
If you use an existing variable that has not been assigned to in the function, then it will use the global
variable.

Too many globals can make a program hard to read and debug.

Chapter 7: Functions © 2021 CJ Associates (rev1.0)

Introduction to Python 169

Example

variable_scope.py

#!/usr/bin/env python

X =5
def spam():
x =22 @

print("spam(): x is", x)
y = "wolverine" @
print("spam(): y is", y)

def eggs():
print("eggs(): x is", x) ®
y = "wolverine"
print("eggs(): y is", y)

spam()
print()
eggs()
print()
print("main: x is

, X)

@ Local variable; does not modify global x
@ Local variable

® Uses global x since there is no local x

© 2021 CJ Associates (rev1.0) Chapter 7: Functions

170

variable_scope.py

spam():
spam():

eggs():
eggs():

X is 22
y is wolverine

X is 5
y is wolverine

main: x is 5

Chapter 7: Functions

Introduction to Python

© 2021 CJ Associates (rev1.0)

Introduction to Python 171

© 2021 CJ Associates (rev1.0) Chapter 7: Functions

172 Introduction to Python

The global statement
 Use global for assignment to global variables

What happens when you want to change a global variable? The global statement allows you to declare
a global variable within a function. That is, when you assign to the variable, you are assigning to the
global variable, instead of a local variable.

Use of the global statement is discouraged, as it can make code maintenance more

WARNIN
G difficult.

Chapter 7: Functions © 2021 CJ Associates (rev1.0)

Introduction to Python 173

Example

global_statement.py

#!/usr/bin/env python

X =5

def spam():
global x @
x =22 @

print("spam(): x is", x)

spam()
print("main: x is

, X)

@ Mark x as global, not local
@ Modify global variable x

global statement.py

spam(): x is 22
main: x is 22

© 2021 CJ Associates (rev1.0) Chapter 7: Functions

174 Introduction to Python

Chapter 7 Exercises

Exercise 7-1 (dirty_strings.py)

Using the existing script dirty_strings.py, write a function named cleanup(). This function should
accept one string as input and returns a copy of the string with whitespace trimmed from the
beginning and the end, and all upper case letters changed to lower case.

NOTE The cleanup() function should not expect a list, but just one string. It should also return
a single string. You should not print the cleaned-up string in the cleanup() function.

Test the function by looping through the list spam and printing each value before and after calling

your function.

Exercise 7-2 (c2f_func.py)

Define a function named c2f that takes one number as a parameter, and then returns the value
converted from Celsius to Fahrenheit. Test your function by calling it with the values 100, 0, 37, and -40
(one at a time, not all at once).

Example

f = ¢21(100)
print(f)

f = c2f(-40)
print(f)

Exercise 7-3 (calc.py)

Write a simple four-function calculator. Repeatedly prompt the user for a math expression, which
should consist of a number, an operator, and another number, all separated by whitespace. The
operator may be any of "+","-", "/", or "*". For example, the user may enter "9 + 5", "4 / 28", or "12 * 5".
Exit the program when the user enters "Q" or "q". (Hint: split the input into the 3 parts — first value,
operator, second value).

Write a function for each operator (named "add", "subtract”, etc). As each line is read, pass the two
numbers to the appropriate function, based on the operator, and get the result, which is then output to
the screen. The division function should check to see whether the second number is zero, and if so,
return an error message, rather than trying to actually do the math.

Chapter 7: Functions © 2021 CJ Associates (rev1.0)

Introduction to Python 175

It is tricky to parse the expression "5+4", so just expect an expression like "5 + 4" which
NOTE you can split on whitespace. To easily parse "5+4", you need the re (regular
expressions) library.

FOR ADVANCED STUDENTS

Add more math operations; test the input to make sure it’s numeric (although in real life you
should use a try block to validate numeric conversions).

© 2021 CJ Associates (rev1.0) Chapter 7: Functions

176 Introduction to Python

Chapter 7: Functions © 2021 CJ Associates (rev1.0)

Introduction to Python 177

Chapter 8: Sorting

Objectives

 Sorting lists and dictionaries

» Sorting on alternate keys

Using lambda functions

Reversing lists

© 2021 CJ Associates (rev1.0) Chapter 8: Sorting

178 Introduction to Python
Sorting Overview

* Get a sorted copy of any sequence
* Iterables of iterables sorted item-by-item

 Sort can be customized
It is typically useful to be able to sort a collection of data. You can get a sorted copy of lists, tuples, and
dictionaries.

The python sort routines sort strings character by character and it sorts numbers numerically. Mixed
types cannot be sorted, since there is no valud greater than/less than comparison between different
types. That is, if s is a string and n is a number, s < n will raise an exception.

The sort order can be customized by providing a callback function to calculate one or more sort keys.
What can you sort?

¢ list elements

tuple elements
* string elements
* dictionary key/value pairs

e set elements

Chapter 8: Sorting © 2021 CJ Associates (rev1.0)

Introduction to Python 179
The sorted() function

» Returns a sorted copy of any collection

* Customize with named keyword parameters

key=
reverse=

The sorted() builtin function returns a sorted copy of its argument, which can be any iterable.

You can customize sorted with the key parameter.

Example

basic_sorting.py

#!/usr/bin/env python

"""Basic sorting example"""

fruits = ["pomegranate”, "cherry", "apricot", "date", "Apple", "lemon", "Kiwi",
"ORANGE", "lime", "Watermelon", "quava", "papaya", "FIG", "pear", "banana",
"Tamarind", "persimmon", "elderberry", "peach", "BLUEberry", "lychee",
"grapell]

sorted fruit = sorted(fruits) @
print(sorted_fruit)

@ sorted() returns a list

basic_sorting.py

['Apple', 'BLUEberry', 'FIG', 'Kiwi', 'ORANGE', 'Tamarind', 'Watermelon', 'apricot',
'banana', 'cherry', 'date', 'elderberry', 'grape', 'guava', 'lemon', 'lime', 'lychee',
'papaya’, 'peach', 'pear', 'persimmon', 'pomegranate’]

© 2021 CJ Associates (rev1.0) Chapter 8: Sorting

180 Introduction to Python

Custom sort keys

» Use key parameter
 Specify name of function to use

» Key function takes exactly one parameter

Useful for case-insensitive sorting, sorting by external data, etc.

You can specify a function with the key parameter of the sorted() function. This function will be used
once for each element of the list being sorted, to provide the comparison value. Thus, you can sort a list
of strings case-insensitively, or sort a list of zip codes by the number of Starbucks within the zip code.

The function must take exactly one parameter (which is one element of the sequence being sorted) and
return either a single value or a tuple of values. The returned values will be compared in order.

You can use any builtin Python function or method that meets these requirements, or you can write
your own function.

The lower() method can be called directly from the builtin object str. It takes one string

TIP
argument and returns a lower case copy.

sorted_strings = sorted(unsorted_strings, key=str.lower)

Chapter 8: Sorting © 2021 CJ Associates (rev1.0)

Introduction to Python 181

Example

custom_sort_keys.py

#!/usr/bin/env python

fruit = ["pomegranate”, "cherry", "apricot", "date", "Apple", "lemon",
"Kiwi", "ORANGE", "lime", "Watermelon", "guava", "papaya", "FIG",
"pear", "banana", "Tamarind", "persimmon", "elderberry", "peach",
"BLUEberry", "lychee", "grape"]

def ignore_case(item): @
return item.lower() @

fs1 = sorted(fruit, key=ignore_case) ®
print("Ignoring case:")
print(" ".join(fs1), end="\n\n")

def by_length_then_name(item):
return (len(item), item.lower()) @

fs2 = sorted(fruit, key=by_length_then_name)
print("By length, then name:")

print(" ".join(fs2))

print()

nums = [800, 80, 1000, 32, 255, 400, 5, 5000]

n1 = sorted(nums) ®
print("Numbers sorted numerically:")
for n in n1:
print(n, end=" ")
print("\n")

n2 = sorted(nums, key=str) ®
print("Numbers sorted as strings:")
for n in n2:

print(n, end=" ")
print()

© 2021 CJ Associates (rev1.0) Chapter 8: Sorting

182 Introduction to Python

@ Parameter is one element of iterable to be sorted

@ Return value to sort on

® Specify function with named parameter key

@ Key functions can return tuple of values to compare, in order
® Numbers sort numerically by default

® Sort numbers as strings
custom_sort_keys.py
Ignoring case:

Apple apricot banana BLUEberry cherry date elderberry FIG grape guava Kiwi lemon Llime
lychee ORANGE papaya peach pear persimmon pomegranate Tamarind Watermelon

By length, then name:
FIG date Kiwi lime pear Apple grape guava lemon peach banana cherry lychee ORANGE papaya

apricot Tamarind BLUEberry persimmon elderberry Watermelon pomegranate

Numbers sorted numerically:
5 32 80 255 400 800 1000 5000

Numbers sorted as strings:
1000 255 32 400 5 5000 80 800

Chapter 8: Sorting © 2021 CJ Associates (rev1.0)

Introduction to Python

Example

sort_holmes.py

#!/usr/bin/env python

"""Sort titles, ignoring leading articles

books = [

def

for

"A Study in Scarlet",

"The Sign of the Four",

"The Hound of the Baskervilles",
"The Valley of Fear",

"The Adventures of Sherlock Holmes",
"The Memoirs of Sherlock Holmes",
"The Return of Sherlock Holmes",
"His Last Bow",

"The Case-Book of Sherlock Holmes",

strip_articles(title): @
title = title.lower()
for article in 'a ', 'an ', 'the ':
if title.startswith(article):
title = title[len(article):] @
break

return title

book in sorted(books, key=strip_articles): ®
print(book)

@ create function which takes element to compare and returns comparison key

@ remove article by using a slice that starts after article + space"

® sort using custom function

© 2021 CJ Associates (rev1.0)

183

Chapter 8: Sorting

184 Introduction to Python

sort_holmes.py

The Adventures of Sherlock Holmes
The Case-Book of Sherlock Holmes
His Last Bow

The Hound of the Baskervilles

The Memoirs of Sherlock Holmes
The Return of Sherlock Holmes

The Sign of the Four

A Study in Scarlet

The Valley of Fear

Chapter 8: Sorting © 2021 CJ Associates (rev1.0)

Introduction to Python 185
Lambda functions

Shortcut for function definition

* Create function on-the-fly
* Body must be an expression
» May take any number of parameters

» For sorting, takes one parameter

Alambda function is a shortcut for defining a function. The syntax is

lambda parameters: expression

The body of a lambda is restricted to being a valid Python expression; block statements and
assignments are not allowed.

When using a lambda function with the key parameter of sorted(), it expects a single parameter,
which is one element of the list being sorted. Lambda functions are particularly useful for sorting
nested collections, such as lists of tuples.

The expression returned can be a tuple containing multiple keys, in the order in which they should be
used.

Thus, the following can be used as a template:

lambda e: expression

© 2021 CJ Associates (rev1.0) Chapter 8: Sorting

186 Introduction to Python

Example

lambda_sort.py

#!/usr/bin/env python

fruit = ["pomegranate”, "cherry", "apricot", "date", "Apple",
"lemon", "Kiwi", "ORANGE", "lime", "Watermelon", "guava",
"papaya", "FIG", "pear", "banana", "Tamarind", "persimmon",
"elderberry", "peach", "BLUEberry", "lychee", "grape"]

nums = [800, 80, 1000, 32, 255, 400, 5, 5000]

fs1 = sorted(fruit, key=lambda e: e.lower()) @
print("Ignoring case:")

print(" ".join(fs1))

print()

fs2 = sorted(fruit, key=lambda e: (len(e), e.lower())) @
print("By length, then name:")

print(" '.join(fs2))

print()

fs3 = sorted(nums)
print("Numbers sorted numerically:")
for n in fs3:
print(n, end=" ")
print()
print()

@ lambda returns key function that converts each element to lower case

@ lambda returns tuple

Chapter 8: Sorting © 2021 CJ Associates (rev1.0)

Introduction to Python 187

lambda_sort.py

Ignoring case:
Apple apricot banana BLUEberry cherry date elderberry FIG grape guava Kiwi lemon lime
lychee ORANGE papaya peach pear persimmon pomegranate Tamarind Watermelon

By length, then name:
FIG date Kiwi lime pear Apple grape guava lemon peach banana cherry lychee ORANGE papaya

apricot Tamarind BLUEberry persimmon elderberry Watermelon pomegranate

Numbers sorted numerically:
5 32 80 255 400 800 1000 5000

© 2021 CJ Associates (rev1.0) Chapter 8: Sorting

188 Introduction to Python
Sorting nested data

* Collections sorted item-by-item

* Only same kind of items can be compared
You can sort a collection of collections, for instance a list of tuples. For each tuple, sorted() will
compare the first element of the tuple, then the second, and so forth.

All of the items in the collection must be the same — they all must be tuples, or lists, or dicts, or strings,
or anything else.

Use a lambda function, and index each element as necessary. To sort a list of tuples by the third
element of each tuple, use

list2 = sorted(list1,key=1ambda e: e[2])

Chapter 8: Sorting © 2021 CJ Associates (rev1.0)

Introduction to Python 189

Example

nested_sort.py

#!/usr/bin/env python

computer_people = [
('Melinda', 'Gates', 'Gates Foundation', '1964-08-15"),
('Steve', 'Jobs', 'Apple', '1955-02-24"),
("Larry', 'Wall', 'Perl', '1954-09-27"),
('Paul', 'Allen', 'Microsoft', '1953-01-21"),
("Larry', 'Ellison', 'Oracle', '1944-08-17'),
('Bill", 'Gates', 'Microsoft', '1955-10-28"),
('Mark', 'Zuckerberg', 'Facebook', '1984-05-14'),
('Sergey','Brin', 'Google', '1973-08-21'),
('Larry', 'Page', 'Google', '1973-03-26'),
('Linus', 'Torvalds', 'Linux', '1969-12-28"),

sort by first name (default)

for first_name, last_name, organization, dob in sorted(computer_people):
print(first_name, last_name, organization, dob)

print('-" * 60)

sort by last name
for first_name, last_name, organization, dob in sorted(computer_people, key=lambda e: e[
11): @
print(first_name, last_name, organization, dob)
print('-" * 60)

sort by company
for first_name, last_name, organization, dob in sorted(computer_people, key=1lambda e: e[
21): @

print(first_name, last_name, organization, dob)

@ Select element of nested tuple for sorting

@ Select different element of nested tuple for sorting

© 2021 CJ Associates (rev1.0) Chapter 8: Sorting

190 Introduction to Python

nested_sort.py

Bill Gates Microsoft 1955-10-28

Larry Ellison Oracle 1944-08-17

Larry Page Google 1973-03-26

Larry Wall Perl 1954-09-27

Linus Torvalds Linux 1969-12-28

Mark Zuckerberg Facebook 1984-05-14
Melinda Gates Gates Foundation 1964-08-15
Paul Allen Microsoft 1953-01-21

Sergey Brin Google 1973-08-21

Steve Jobs Apple 1955-02-24

Paul Allen Microsoft 1953-01-21

Sergey Brin Google 1973-08-21

Larry Ellison Oracle 1944-08-17

Melinda Gates Gates Foundation 1964-08-15
Bill Gates Microsoft 1955-10-28

Steve Jobs Apple 1955-02-24

Larry Page Google 1973-03-26

Linus Torvalds Linux 1969-12-28

Larry Wall Perl 1954-09-27

Mark Zuckerberg Facebook 1984-05-14

Steve Jobs Apple 1955-02-24

Mark Zuckerberg Facebook 1984-05-14
Melinda Gates Gates Foundation 1964-08-15
Sergey Brin Google 1973-08-21

Larry Page Google 1973-03-26

Linus Torvalds Linux 1969-12-28

Paul Allen Microsoft 1953-01-21

Bill Gates Microsoft 1955-10-28

Larry Ellison Oracle 1944-08-17

Larry Wall Perl 1954-09-27

Chapter 8: Sorting © 2021 CJ Associates (rev1.0)

Introduction to Python 191
Sorting dictionaries

 Use dict.items()
» By default, sorts by key

» Use a lambda function or itemgetter() to sort by value

While a dictionary can’t be sorted, the keys to a dictionary can. Better yet, the list of tuples returned by
DICT.items() can be sorted. This list will be sorted by keys, unless you specify a key function.

Use a lambda function or operator.itemgetter() to specify the 2nd element of the key,value tuple to sort
by values.

Sorting dictionary.items() is really just sorting a list of tuples.

Example

sorting_dicts.py

#!/usr/bin/env python
count_of = dict(red=5, green=18, blue=1, pink=0, grey=27, yellow=5)
sort by key
for color, num in sorted(count of.items()): @
print(color, num)
print()
sort by value

for color, num in sorted(count_of.items(), key=lambda e: e[1]): @
print(color, num)

@ No special sort needed to sort by key

@ Sorting by value uses second element of nested (key, value) pairs returned by items()

© 2021 CJ Associates (rev1.0) Chapter 8: Sorting

192

sorting dicts.py

blue 1
green 18
grey 27
pink 0
red 5
yellow 5

pink
blue 1
red 5
yellow 5
green 18
grey 27

Chapter 8: Sorting

Introduction to Python

© 2021 CJ Associates (rev1.0)

Introduction to Python 193
Sorting in reverse

e Use reverse=True

To sort in reverse, add the reverse parameter to sorted() or list.sort() with a true value (e.g. True).

Example

reverse_sort.py

#!/usr/bin/env python

fruits = ["pomegranate”, "cherry", "apricot", "date", "Apple",
"lemon", "Kiwi", "ORANGE", "lime", "Watermelon", "quava",
"papaya", "FIG", "pear", "banana", "Tamarind", "persimmon",
"elderberry", "peach", "BLUEberry", "lychee", "grape"]

print("reverse, case-sensitive:")

sorted fruits = sorted(fruits, reverse=True) @
print(" ".join(sorted_fruits))

print()

print("reverse, case-insensitive:")

sorted_fruits = sorted(fruits, reverse=True, key=lambda e: e.lower()) @
print(" ".join(sorted_fruits))

print()

@ Set reverse to True to reverse sort

@ reverse can be combined with key functions

© 2021 CJ Associates (rev1.0) Chapter 8: Sorting

194 Introduction to Python

reverse_sort.py

reverse, case-sensitive:
pomegranate persimmon pear peach papaya lychee lime lemon guava grape elderberry date
cherry banana apricot Watermelon Tamarind ORANGE Kiwi FIG BLUEberry Apple

reverse, case-insensitive:
Watermelon Tamarind pomegranate persimmon pear peach papaya ORANGE lychee lime lemon Kiwi
guava grape FIG elderberry date cherry BLUEberry banana apricot Apple

Chapter 8: Sorting © 2021 CJ Associates (rev1.0)

Introduction to Python 195
Sorting lists in place

e Use list.sort()

* Only for lists (not strings or tuples

To sort a list in place, use the list’s sort() method. It works exactly like sorted(), except that the sort
changes the order of the items in the list, and does not make a copy.

Example

sort_in_place.py

#!/usr/bin/env python
fruit = ["pomegranate”, "cherry", "apricot", "date", "Apple", "lemon", "Kiwi", "ORANGE",
"lime", "Watermelon", "quava", "papaya", "FIG", "pear", "banana", "Tamarind",

"persimmon", "elderberry", "peach", "BLUEberry", "lychee", "grape"

]
fruit.sort(key=str.lower) @

print(" ".join(fruit))

@ List is sorted in place; cannot be undone

sort_in_place.py

Apple apricot banana BLUEberry cherry date elderberry FIG grape guava Kiwi lemon lime
lychee ORANGE papaya peach pear persimmon pomegranate Tamarind Watermelon

© 2021 CJ Associates (rev1.0) Chapter 8: Sorting

196 Introduction to Python

Chapter 8 Exercises

Exercise 8-1 (scores_by_score.py)

Redo scores.py, printing out the students in descending order by score.

You will not need to change anything in scores.py other than the loop that prints out the

TIP
names and scores.

Exercise 8-2 (alt_sorted.py)

Read in the file alt.txt. Put all the words that start with 'a' in to a file named a_sorted.txt, in sorted
order. Put all the words that start with 'b'in b_sorted.txt, in reverse sorted order.

TIP Read through the file once, putting lines into two lists.

Exercise 8-3 (sort_fruit.py)
Using the file fruit.txt, print it out:

 sorted by name case-sensitively (the default)
 sorted by name case-insensitively (ignoring case)
* sorted by length of name, then by name

* sorted by the 2nd letter of the name, then the first letter

Exercise 8-4 (sort_presidents.py)

Using the file presidents.txt, print out the presidents' first name, last name, and state of birth, sorted by
last name, then first name.

TIP Use the split() method on each line to get the individual fields.

Chapter 8: Sorting © 2021 CJ Associates (rev1.0)

Introduction to Python 197

Chapter 9: Regular Expressions

Objectives

* Creating regular expression objects

* Matching, searching, replacing, and splitting text
* Adding options to a pattern

» Replacing text with callbacks

» Specifying capture groups

* Using RE patterns without creating objects

© 2021 CJ Associates (rev1.0) Chapter 9: Regular Expressions

198 Introduction to Python
Regular Expressions

 Specialized language for pattern matching
* Begun in UNIX; expanded by Perl

* Python adds some conveniences

Regular expressions (or REs) are essentially a tiny, highly specialized
programming language embedded inside Python and made available through
the re module. Using this little language, you specify the rules for the set of
possible strings that you want to match; this set might contain English
sentences, or e-mail addresses, or TeX commands, or anything you like. You
can then ask questions such as Does this string match the pattern?”, or Is there
a match for the pattern anywhere in this string?". You can also use REs to
modify a string or to split it apart in various ways.

— Python Regular Expression HOWTO

Regular expressions were first popularized thirty years ago as part of Unix text processing programs
such as vi, sed, and awk. While they were improved incrementally over the years, it was not until the
advent of Perl that they substantially changed from the originals. Perl added extensions of several
different kinds — shortcuts for common sequences, look-ahead and look-behind assertions, non-greedy
repeat counts, and a general syntax for embedding special constructs within the regular expression
itself.

Python uses Perl-style regular expressions (AKA PCREs) and adds a few extensions of its own.

Chapter 9: Regular Expressions © 2021 CJ Associates (rev1.0)

Introduction to Python 199
RE Syntax Overview

* Regular expressions contain branches
» Branches contain atoms
* Atoms may be quantified

» Branches and atoms may be anchored
A regular expression consists of one or more branches separated by the pipe symbol. The regular
expression matches any text that is matched by any of the branches.

A branch is a left-to-right sequence of atoms. Each atom consists of either a one-character match or a
parenthesized group. Each atom can have a quantifier (repeat count). The default repeat count is one.

A branch can be anchored to the beginning or end of the text. Any part of a branch can be anchored to
the beginning or end of a word.

TIP There is frequently only one branch.

Two good web apps for working with Python regular expressions are
https://regex101.com/#python
http://www.pythex.org/

© 2021 CJ Associates (rev1.0) Chapter 9: Regular Expressions

https://regex101.com/#python
http://www.pythex.org/

200 Introduction to Python

Table 13. Regular Expression Metacharacters
Pattern Description

any character

[abc] any character in set

[~abc] any character not in set

\w,\W any word, non-word char

\d,\D any digit, non-digit

\s,\S any space, non-space char

NS beginning, end of string

\b beginning or end of word

\ escape a special character

*+? 0 or more, 1 or more, 0 or 1

{m} exactly m occurrences

{m,} at least m occurrences

{m,n} m through n occurrences

alb matchaorb

(?aiLmsux) Setthe A, I, L, M, S, U, or X flag for the RE (see below).

(?:..) Non-capturing version of regular parentheses.
(?P<name>...) The substring matched by the group is accessible by name.
(?P=name) Matches the text matched earlier by the group named name.
(?#...) A comment; ignored.

(?=..) Matches if ... matches next, but doesn’t consume the string.
(?L.) Matches if ... doesn’t match next.

(?<..) Matches if preceded by ... (must be fixed length).

(?<!.) Matches if not preceded by ... (must be fixed length).

Chapter 9: Regular Expressions © 2021 CJ Associates (rev1.0)

Introduction to Python 201
Finding matches

e Module defines static functions

« Arguments: pattern, string

There are three primary methods for finding matches.
re.search(pattern, string)

Searches s and returns the first match. Returns a match object (SRE_Match) on success or None on
failure. A match object is always evaluated as True, and so can be used in if statements and while
loops. Call the group() method on a match object to get the matched text.

re.finditer(pattern, string)
Provides a match object for each match found. Normally used with a for loop.
re.findall(pattern, string)

Finds all matches and returns a list of matched strings.

Since regular expressions generally contain many backslashes, it is usual to specify the pattern with a
raw string.
Other match methods

re.match() is like re.search(), but searches for the pattern at beginning of s. There is an implied
A at the beginning of the pattern.

Likewise re.fullmatch() only succeeds if the pattern matches the entire string. A and $ around
the pattern are implied.

Use the search() method unless you only want to match the beginning of the string.

© 2021 CJ Associates (rev1.0) Chapter 9: Regular Expressions

202 Introduction to Python

Example

regex_finding_matches.py

#!/usr/bin/env python

import re

s = """lorem ipsum M-302 dolor sit amet, consectetur r-99 adipiscing elit, sed do
eiusmod tempor incididunt H-476 ut labore et dolore magna Q-51 aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex

ea commodo z-883 consequat. Duis aute irure dolor in reprehenderit in

voluptate velit esse cillum dolore U901 eu fugiat nulla pariatur.

Excepteur sint occaecat A-110 cupidatat non proident, sunt in H-332 culpa qui
officia deserunt Y-45 mollit anim id est laborum"""

pattern = r'[A-Z]-\d{2,3}' @

if re.search(pattern, s): @
print("Found pattern.")
print()

m = re.search(pattern, s) ®
print(m)
if m:

print("Found:", m.group(0)) @
print()

for m in re.finditer(pattern, s): ®
print(m.group())
print()

matches = re.findall(pattern, s) ®
print("matches:", matches)

Chapter 9: Regular Expressions © 2021 CJ Associates (rev1.0)

Introduction to Python 203

@ store pattern in raw string

@ search returns True on match

® search actually returns match object

@ group(0) returns text that was matched by entire expression (or just m.group())
® iterate over all matches in string:

® return list of all matches

regex_finding _matches.py

Found pattern.

<re.Match object; span=(12, 17), match="M-302'>
Found: M-302

M-302
H-476
Q-51
A-110
H-332
Y-45

matches: ['M-302', 'H-476', 'Q-51", 'A-110', 'H-332", 'Y-45']

© 2021 CJ Associates (rev1.0) Chapter 9: Regular Expressions

204 Introduction to Python

RE Objects

* re object contains a compiled regular expression

 Call methods on the object, with strings as parameters.

An re object is created by calling the compile() function, from the re module, with a pattern string.
Once created, the object can be used for searching (matching), replacing, and splitting any string. The
re.compile() function has an optional argument for flags which enable special features or fine-tune the
match.

It is generally a good practice to create your re objects in a location near the top of your

TIP .
script, and then use them as necessary

Chapter 9: Regular Expressions © 2021 CJ Associates (rev1.0)

Introduction to Python 205

Example

regex_objects.py

#!/usr/bin/env python

import re

s = """lorem ipsum M-302 dolor sit amet, consectetur r-99 adipiscing elit, sed do
eiusmod tempor incididunt H-476 ut labore et dolore magna Q-51 aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex

ea commodo z-883 consequat. Duis aute irure dolor in reprehenderit in

voluptate velit esse cillum dolore U901 eu fugiat nulla pariatur.

Excepteur sint occaecat A-110 cupidatat non proident, sunt in H-332 culpa qui
officia deserunt Y-45 mollit anim id est laborum"""

rx_code = re.compile(r'[A-Z]-\d{2,3}') @

if rx_code.search(s): @
print("Found pattern.")
print()

m = rx_code.search(s)
if m:

print("Found:", m.group())
print()

for m in rx_code.finditer(s):
print(m.group())
print()

matches = rx_code.findall(s)
print("matches:", matches)

@ Create an re (regular expression) object

@ Call search() method from the object

© 2021 CJ Associates (rev1.0) Chapter 9: Regular Expressions

206 Introduction to Python

regex_objects.py

Found pattern.
Found: M-302

M-302
H-476
Q-51
A-110
H-332
Y-45

matches: ['M-302', 'H-476', 'Q-51', 'A-110', 'H-332', 'Y-45']

Chapter 9: Regular Expressions © 2021 CJ Associates (rev1.0)

Introduction to Python 207
Compilation Flags

e Control match

e Add features

When compiling a pattern, you can specify various flags to control how the match occurs. The flags are
aliases for numeric values, and can be combined by ORing them together Each flag has a short for and
a long form.

re.l, re JIGNORECASE

Perform case-insensitive matching; character class and literal strings will match letters by ignoring
case. For example, [A-Z] will match lowercase letters, too, and Spam will match "Spam", "spam", or
"SpAM". This lower-casing doesn’t take the current locale into account; it will if you also set the

LOCALE flag.
re.L, re. LOCALE
Make \w, \W, \b, and \B, dependent on the current locale.

Locales are a feature of the C library intended to help in writing programs that take account of
language differences. For example, if you’re processing French text, you’d want to be able to write \w+
to match words, but \w only matches the character class [A-Za-z]; it won’t match "é" or "¢". If your
system is configured properly and a French locale is selected, certain C functions will tell the program
that "é" should also be considered a letter. Setting the LOCALE flag enables \w+ to match French words

as you’d expect.
re.M, re MULTILINE

Usually A matches only at the beginning of the string, and $ matches only at the end of the string and
immediately before the newline (if any) at the end of the string. When this flag is specified, » matches
at the beginning of the string and at the beginning of each line within the string, immediately following
each newline. Similarly, the $ metacharacter matches either at the end of the string and at the end of
each line (immediately preceding each newline).

re.S, re. DOTALL

nn

Makes the "." special character match any character at all, including a newline; without this flag, ".
match anything except a newline.

will

© 2021 CJ Associates (rev1.0) Chapter 9: Regular Expressions

208 Introduction to Python

re.X, re.VERBOSE

This flag allows you to write regular expressions that are more readable by granting you more
flexibility in how you can format them. When this flag has been specified, whitespace within the RE
string is ignored, except when the whitespace is in a character class or preceded by an unescaped
backslash; this lets you organize and indent the RE more clearly. It also enables you to put comments
within a RE that will be ignored by the engine; comments are marked by a "#" that’s neither in a
character class or preceded by an unescaped backslash. Use a triple-quoted string for your pattern to
make best advantage of this flag.

Chapter 9: Regular Expressions © 2021 CJ Associates (rev1.0)

Introduction to Python 209

Example

regex_flags.py

#!/usr/bin/env python

import re

s = """lorem ipsum M-302 dolor sit amet, consectetur r-99 adipiscing elit, sed do
eiusmod tempor incididunt H-476 ut labore et dolore magna Q-51 aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex

ea commodo z-883 consequat. Duis aute irure dolor in reprehenderit in

voluptate velit esse cillum dolore U901 eu fugiat nulla pariatur.

Excepteur sint occaecat A-110 cupidatat non proident, sunt in H-332 culpa qui
officia deserunt Y-45 mollit anim id est laborum"""

pattern = r'[A-Z]-\d{2,3}'

if re.search(pattern, s, re.IGNORECASE): @
print("Found pattern.")
print()

m = re.search(pattern, s, re.I | re.M) @
if m:

print("Found:", m.group())
print()

for m in re.finditer(pattern, s, re.I):
print(m.group())
print()

matches = re.findall(pattern, s, re.I)
print("matches:", matches)

@ make search case-insensitive

@ short version of flag

© 2021 CJ Associates (rev1.0) Chapter 9: Regular Expressions

210 Introduction to Python

regex_flags.py

Found pattern.
Found: M-302

M-302
r-99
H-476
Q-51
z-883
A-110
H-332
Y-45

matches: ['M-302', 'r-99', 'H-476', 'Q-51', 'z-883', 'A-110', 'H-332', 'Y-45']

Chapter 9: Regular Expressions © 2021 CJ Associates (rev1.0)

Introduction to Python 211
Groups

» Marked with parentheses
» Capture whatever matched pattern within

» Access with match.group()

Frequently you need to obtain more information than just whether the RE matched or not. Regular
expressions are often used to dissect strings by writing a RE divided into several subgroups which
match different components of interest. For example, an RFC-822 header line is divided into a header
name and a value, separated by a ":". This can be handled by writing a regular expression which
matches an entire header line, and has one group which matches the header name, and another group
which matches the header’s value.

Groups are marked with parentheses, and 'capture’ whatever matched the pattern inside the
parentheses.

re.findall() returns a list of tuples, where each tuple contains the match for each group.

To access groups in more detail, use finditer() and call the group() method on each match object. The
default group is 0, which is always the entire match. It can be retrieved with either match.group(0), or
just match.group(). match.group(l) returns text matched by the first set of parentheses,
match.group(2) returns the text from the second set, etc.

In the same vein, match.start() or match.start(0) return the beginning 0-based offset of the entire
match; match.start(1) returns the beginning offset of group 1, and so forth. The same is true for
match.end() and match.end(n).

match.span() returns the the start and end offsets for the entire match. match.span(1) returns start
and end offsets for group 1, and so forth.

© 2021 CJ Associates (rev1.0) Chapter 9: Regular Expressions

212 Introduction to Python

Example

regex_group.py

#!/usr/bin/env python

import re

s = """lorem ipsum M-302 dolor sit amet, consectetur r-99 adipiscing elit, sed do
eiusmod tempor incididunt H-476 ut labore et dolore magna Q-51 aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex

ea commodo z-883 consequat. Duis aute irure dolor in reprehenderit in

voluptate velit esse cillum dolore U901 eu fugiat nulla pariatur.

Excepteur sint occaecat A-110 cupidatat non proident, sunt in H-332 culpa qui
officia deserunt Y-45 mollit anim id est laborum"""

pattern = r'([A-Z])-(\d{2,3})' @

for m in re.finditer(pattern, s):
print(m.group(@), m.group(1), m.group(2)) @
print(m.start(1), m.end(1), m.span())

print()

matches = re.findall(pattern, s) ®
print("matches:", matches)

@ parens delimit groups
@ group 1 is first group, etc. (group 0 is entire match)

® findall() returns list of tuples containing groups

Chapter 9: Regular Expressions © 2021 CJ Associates (rev1.0)

Introduction to Python 213

regex_group.py

M-302 M 302

12 13 (12, 17)
H-476 H 476

102 103 (102, 107)
Q-51 Q 51

134 135 (134, 138)
A-110 A 110

398 399 (398, 403)
H-332 H 332

436 437 (436, 441)
Y-45 Y 45

470 471 (470, 474)

matches: [('M', '302"), ('H', '476'), ('Q', '51"), ('A", '110"), ('H', "332"), ('Y',
'45')]

© 2021 CJ Associates (rev1.0) Chapter 9: Regular Expressions

214 Introduction to Python
Special Groups

» Non-capture groups are used just for grouping
» Named groups allow retrieval of sub-expressions by name rather than number

* Look-ahead and look-behind match, but do not capture

There are two variations on RE groups that are useful. If the first character inside the group is a
question mark, then the parentheses contain some sort of extended pattern, designated by the next
character after the question mark. The most basic is (?:pattern), which groups but does not capture.

A welcome addition in Python is the concept of named groups. Instead of remembering that the month
is the 3rd group and the year is the 4th group, you can use the syntax (?P<name>pattern). You can then
call match.group("name") to fetch the text match by that sub-expression; alternatively, you can call
match.groupdict(), which returns a dictionary where the keys are the pattern names, and the values
are the text matched by each pattern.

Another advanced concept is an assertion, either lookahead or lookbehind. A lookahead assertion uses
the syntax (?=pattern). The string being matched must match the lookahead, but does not become part
of the overall match.

For instance, "\d(?st|nd |rd | th)(?=street)" matches "1st", "2nd", etc., but only where they are followed
by "street".

Chapter 9: Regular Expressions © 2021 CJ Associates (rev1.0)

Introduction to Python 215

Example

regex_special.py

#!/usr/bin/env python

import re

s = """lorem ipsum M-302 dolor sit amet, consectetur r-99 adipiscing elit, sed do
eiusmod tempor incididunt H-476 ut labore et dolore magna Q-51 aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex

ea commodo z-883 consequat. Duis aute irure dolor in reprehenderit in

voluptate velit esse cillum dolore U901 eu fugiat nulla pariatur.

Excepteur sint occaecat A-110 cupidatat non proident, sunt in H-332 culpa qui
officia deserunt Y-45 mollit anim id est laborum"""

pattern = r'(?P<letter>[A-Z])-(?P<number>\d{2,3})' @

for m in re.finditer(pattern, s):
print(m.group('letter'), m.group('number')) @

@ Use (?<NAME>...) to name groups
@ Use m.group(NAME) to retrieve text

regex_special.py

M 302
H 476
Q 51
A 110
H 332
Y 45

© 2021 CJ Associates (rev1.0) Chapter 9: Regular Expressions

216 Introduction to Python
Replacing text

» Use RE.sub(replacement,string[,count])

* RE.subn() returns tuple with string and count
To find and replace text using a regular expression, use the sub() method. It takes the replacement text
and the string to search as arguments, and returns the modified string.
The third, optional argument is the maximum number of replacements to make.

Be sure to put the arguments in the proper order!

Example

regex_sub.py

#!/usr/bin/env python
import re

s = """lorem ipsum M-302 dolor sit amet, consectetur r-99 adipiscing elit, sed do
eiusmod tempor incididunt H-476 ut labore et dolore magna Q-51 aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex

ea commodo z-883 consequat. Duis aute irure dolor in reprehenderit in

voluptate velit esse cillum dolore U901 eu fugiat nulla pariatur.

Excepteur sint occaecat A-110 cupidatat non proident, sunt in H-332 culpa qui
officia deserunt Y-45 mollit anim id est laborum"""

rx_code = re.compile(r'(?P<letter>[A-Z])-(?P<number>\d{2,3})', re.I)

s2 = rx_code.sub("[REDACTED]", s) @D

print(s2)

print()

s3, count = rx_code.subn("___ ", s) @
print("Made {} replacements".format(count))
print(s3)

@ replace pattern with string

@ subn returns tuple with result string and replacement count

Chapter 9: Regular Expressions © 2021 CJ Associates (rev1.0)

Introduction to Python 217

regex_sub.py

lorem ipsum [REDACTED] dolor sit amet, consectetur [REDACTED] adipiscing elit, sed do
eiusmod tempor incididunt [REDACTED] ut labore et dolore magna [REDACTED] aliqua. Ut
enim

ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex

ea commodo [REDACTED] consequat. Duis aute irure dolor in reprehenderit in

voluptate velit esse cillum dolore U901 eu fugiat nulla pariatur.

Excepteur sint occaecat [REDACTED] cupidatat non proident, sunt in [REDACTED] culpa qui
officia deserunt [REDACTED] mollit anim id est laborum

Made 8 replacements

lorem ipsum ___ dolor sit amet, consectetur ___ adipiscing elit, sed do
eiusmod tempor incididunt ___ ut labore et dolore magna ___ aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex
ea commodo ___ consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore U901 eu fugiat nulla pariatur.

Excepteur sint occaecat ___ cupidatat non proident, sunt in ___ culpa qui

officia deserunt ___ mollit anim id est laborum

© 2021 CJ Associates (rev1.0) Chapter 9: Regular Expressions

218 Introduction to Python

Replacing with a callback

* Replacement can be function
» Function expects match object, returns replacement text

» Use normally defined function or a lambda
In addition to using a string as the replacement, you can specify a function. This function will be called
once for each match, with the match object as its only parameter.

Whatever string the function returns will be used as the replacement text. This lets you have complete
control over the replacement.

Using a callback makes it simple to:

* preservecase in a replacement
* add text around the replacement

* look up the text in a dictionary or database to find replacement text

Chapter 9: Regular Expressions © 2021 CJ Associates (rev1.0)

Introduction to Python 219

Example

regex_sub_callback.py

#!/usr/bin/env python

import re

s = """lorem ipsum M302 dolor sit amet, consectetur r99 adipiscing elit, sed do
eiusmod tempor incididunt H476 ut labore et dolore magna Q51 aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex
ea commodo /883 consequat. Duis aute irure dolor in reprehenderit in

voluptate velit esse cillum dolore U901 eu fugiat nulla pariatur.

Excepteur sint occaecat A110 cupidatat non proident, sunt in H332 culpa qui
officia deserunt Y45 mollit anim id est laborum"""

rx_code = re.compile(r'(?P<letter>[A-Z])(?P<number>\d{2,3})"', re.I)

def update_code(m): @
letter = m.group('letter").upper()
number = int(m.group('number"))
return '{}:{:04d}'.format(letter, number) @

s2 = rx_code.sub(update_code, s) ®
print(s2)

@ callback function is passed each match object
@ function returns replacement text

® sub takes callback function instead of replacement text

© 2021 CJ Associates (rev1.0) Chapter 9: Regular Expressions

220 Introduction to Python

regex_sub_callback.py

lorem ipsum M:0302 dolor sit amet, consectetur R:0099 adipiscing elit, sed do
eiusmod tempor incididunt H:0476 ut labore et dolore magna Q:0051 aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex

ea commodo Z:0883 consequat. Duis aute irure dolor in reprehenderit in

voluptate velit esse cillum dolore U:0901 eu fugiat nulla pariatur.

Excepteur sint occaecat A:0110 cupidatat non proident, sunt in H:0332 culpa qui
officia deserunt Y:0045 mollit anim id est laborum

Chapter 9: Regular Expressions © 2021 CJ Associates (rev1.0)

Introduction to Python 221
Splitting a string
o Syntax: re.split(string[,max])

The re.split) method splits a string into pieces, returning the pieces as a list. The optional max
argument limits the numbers of pieces.

Example

regex_split.py

#!/usr/bin/env python

import re

rx_wordsep = re.compile(r"[?a-z]+", re.I) @D

s1 = '"'There are 10 kinds of people in a Binary world, I hear" -- Geek talk'''

words = rx_wordsep.split(s1) @
print(words)

@ When splitting, pattern matches what you don’t want

@ Retrieve text separated by your pattern

regex_split.py

['There', 'are', 'kinds', 'of', 'people', 'in', 'a', 'Binary', 'world', 'I', 'hear’,
"Geek', 'talk']

© 2021 CJ Associates (rev1.0) Chapter 9: Regular Expressions

222 Introduction to Python

Chapter 9 Exercises

Exercise 9-1 (pyfind.py)

Write a script which takes two or more arguments. The first argument is the pattern to search for; the
remaining arguments are files to search. For each file, print out all lines which match the pattern.1

Exercise 9-2 (mark_big words.py)

Copy parrot.txt to bigwords.txt adding asterisks around all words that are 8 or more characters long.

HINT: Use the \b anchor to indicate beginning and end of a word.

Exercise 9-3 (print_numbers.py)

Write a script to print out all lines in custinfo.dat which contain phone numbers.

Exercise 9-4 (word_freq.py)

Write a script that will read a text file and print out a list of all the words in the file, normalized to
lower case, and with the number of times that word occurred in the file. Use the regular expression
[M\w']+ for splitting each line into words.

Test with any of the text files in the DATA folder.

Chapter 9: Regular Expressions © 2021 CJ Associates (rev1.0)

Introduction to Python 223

Chapter 10: Using the Standard Library

Objectives

* Overview of the standard library

* Getting information on the Python interpreter’s environment
* Running external programs

» Walking through a directory tree

* Working with path names

* Calculating dates and times

* Fetching data from a URL

* Generating random values

© 2021 CJ Associates (rev1.0) Chapter 10: Using the Standard Library

224 Introduction to Python
The sys module

* Import the sys module to provide access to the interpreter and its environment
» Get interpreter attributes

* Interact with the operating system
The sys module provides access to some objects used or maintained by the interpreter and to functions
that interact strongly with the interpreter.

This module provides details of the current Python interpreter; it also provides objects and methods to
interact with the operating system.

Even though the sys module is built into the Python interpreter, it must be imported like any other
module.

Interpreter Information

* sys provides details of interpreter

To get the folder where Python is installed, use sys.prefix.

To get the path to the Python executable, use sys.executable.

To get a version string, use sys.version.

To get the details of the interpreter as a tuple, use sys.version_info.

To get the list of directories that will be searched for modules, examine sys.path.
To get a list of currently loaded modules, use sys.modules.

To find out what platform (OS/architecture) the script is running on, use sys.platform.

Chapter 10: Using the Standard Library © 2021 CJ Associates (rev1.0)

Introduction to Python 225
STDIO

e stdin
e stdout

e stderr

The sys object defines three file objects representing the three streams of STDIO, or "standard I/O".

Unless they have been redirected, sys.stdin is the keyboard, and sys.stdout and sys.stderr are the
console screen. You should use sys.stderr for error messages.

Example

stdio.py

#!/usr/bin/env python

import sys
sys.stdout.write("Hello, world\n")
sys.stderr.write("Error message here...\n")

stdio.py 2>spam.txt
Hello, world

type spam.txt windows

cat spam.txt non-windows

Error message here...

© 2021 CJ Associates (rev1.0) Chapter 10: Using the Standard Library

226 Introduction to Python
Launching external programs

* Different ways to launch programs
o Just launch (use system())
o Capture output (use popen())

* import os module

» Use system() or popen() methods

In Python, you can launch an external command using the os module functions os.system() and
os.popen().

os.system() launches any external command, as though you had typed it at a command prompt.
popen() opens a pipe to a command so you can read the output of the command one line at a time.
popen() is very similar to the open() function; it returns an iterable object.

For more control over external processes, use the subprocess module (part of the standard
library), or check out the sh module (not part of the standard library).

Chapter 10: Using the Standard Library © 2021 CJ Associates (rev1.0)

Introduction to Python 227

Example

external_programs.py

#!/usr/bin/env python
import os

os.system("hostname") @

with os.popen('netstat -an') as netstat_in: @
for entry in netstat_in: ®
if 'ESTAB' in entry: @
print(entry, end="")
print()

@ Just run "hostname"
@ Open command line "netstat -an" as a file-like object
® Iterate over lines in output of "netstat -an"

@ Check to see if line contains "ESTAB"

external programs.py

Johns-Macbook.attlocal.net
tepd 0 @ 192.168.1.242.50686 64.68.120.47.443 ESTABLISHED

tepb 0 0 2600:1700:3901:6.50682 2303:2880:1011:1.443 ESTABLISHED
tepb 0 0 2600:1700:3901:6.50678 2607:18b0:4000:8.443 ESTABLISHED
tepb 0 0 2600:1700:3901:6.50661 2607:f8b0:4002:c.443 ESTABLISHED
tepb 0 0 2600:1700:3901:6.50657 2203:2880:1011:1.443 ESTABLISHED
tepd 0 0 192.168.1.242.50630 140.82.114.25.443 ESTABLISHED
tepd 0 0 192.168.1.242.49817 162.247.243.146.443 ESTABLISHED
tepb 0 0 2600:1700:3901:6.49795 2203:2880:1011:1.443 ESTABLISHED
tepd 0 0 192.168.1.242.49728 209.197.219.155.443 ESTABLISHED
tep4 0 0 192.168.1.242.49724 216.151.147.132.443 ESTABLISHED
tepd 0 0 192.168.1.242.49723 216.151.147.132.443 ESTABLISHED
tep4 0 0 192.168.1.242.49341 162.247.243.146.443 ESTABLISHED
tepb 0 0 2600:1700:3901:6.49334 2607:f8b0:4023:1.5228 ESTABLISHED
tepd 0 0 192.168.1.242.57989 34.105.102.6.80 ESTABLISHED

© 2021 CJ Associates (rev1.0) Chapter 10: Using the Standard Library

228 Introduction to Python
Paths, directories and filenames

* import os.path module

 path is mapped to appropriate package for current os

The os.path module provides many functions for working with paths.
* Some of the more common methods:

> o0S.path.exists()

o os.path.dirname()

o o0s.path.basename

o os.path.split()

os.path is the primary module for working with filenames and paths. There are many methods for
getting and modifying a file or folder’s path.

Also provide are methods for getting information about a file.

Chapter 10: Using the Standard Library © 2021 CJ Associates (rev1.0)

Introduction to Python 229

Example

paths.py

#!/usr/bin/env python
import sys
import os.path

unix_p1 = "bin/spam.txt" @

unix_p2 = "/usr/local/bin/ham" @

win_p1 = r"spam\ham.doc" @

win_p2 = r"\\spam\ham\eggs\toast\jam.doc" @

if sys.platform == 'win32': ®
print("win_p1:", win_p1)
print("win_p2:", win_p2)
print("dirname(win_p1):", os.path.dirname(win_p1)) ®
print("dirname(win_p2):", os.path.dirname(win_p2))
print("basename(win_p1):", os.path.basename(win_p1)) @
print("basename(win_p2):", os.path.basename(win_p2))
print("isabs(win_p1):", os.path.isabs(win_p1)) ®
print("isabs(win_p2):", os.path.isabs(win_p2))

else:
print("unix_p1:", unix_p1)
print("unix_p2:", unix_p2)
print("dirname(unix_p1):", os.path.dirname(unix_p1)) ®
print("dirname(unix_p2):", os.path.dirname(unix_p2))
print("basename(unix_p1):", os.path.basename(unix_p1)) @
print("basename(unix_p2):", os.path.basename(unix_p2))
print("isabs(unix_p1):", os.path.isabs(unix_p1)) ®
print("isabs(unix_p2):", os.path.isabs(unix_p2))
print(

"format("cp spam.txt {}".format(os.path.expanduser("~"))):', ©
format("cp spam.txt {}".format(os.path.expanduser("~"))),

)

print(
"format("cd {}".format(os.path.expanduser("~root"))):"', @
format("cd {}".format(os.path.expanduser("~root"))),

)

© 2021 CJ Associates (rev1.0) Chapter 10: Using the Standard Library

230

@ Unix relative path

@ Unix absolute path

® Windows relative path

@ Windows UNC path

® What platform are we on?
® Just the folder name

@ Just the file (or folder) name
Is it an absolute path?

© ~ is current user’s home

~NAME is NAME’s home

Chapter 10: Using the Standard Library

Introduction to Python

© 2021 CJ Associates (rev1.0)

Introduction to Python 231

paths.py

unix_p1: bin/spam.txt

unix_p2: /usr/local/bin/ham

dirname(unix_p1): bin

dirname(unix_p2): /usr/local/bin

basename(unix_p1): spam.txt

basename(unix_p2): ham

isabs(unix_p1): False

isabs(unix_p2): True

format("cp spam.txt {}".format(os.path.expanduser("~"))): cp spam.txt /Users/jstrick
format("cd {}".format(os.path.expanduser("~root"))): cd /var/root

paths.py (windows)

dirname(win_p1): \\marmoset\sharing\technology\docs\bonsai

dirname(win_p2): \\marmoset\sharing\technology\docs\bonsai

basename(win_p1): foo.doc

basename(win_p2): foo.doc

os.path.split(win_p1) Head: \\marmoset\sharing\technology\docs\bonsai Tail: foo.doc
os.path.split(win_p1) Head: bonsai Tail: foo.doc

os.path.splitunc(win_p1) Head: \\marmoset\sharing Tail: \technology\docs\bonsai\foo.doc
os.path.splitunc(win_p1) Head: Tail: bonsai\foo.doc

© 2021 CJ Associates (rev1.0) Chapter 10: Using the Standard Library

232 Introduction to Python
Walking directory trees

* Import os module
» Use the os.walk() iterator
» Returns tuple for each directory starting with the specified top directory

» Tuple contains full path to directory, list of subdirectories, and list of files *syntax:

for currdir,subdirs,files in os.walk("start-dir"):
pass

The os.walk() method provides a way to easily walk a directory tree. It provides an iterator for a
directory and all its subdirectories. For each directory, it returns a tuple with three values.

The first element is the full (absolute) path to the directory; the second element is a list of the
directory’s subdirectories (relative names); the third element is a list of the non-directory files in the
subdirectory (also relative names).

Remember to not use "dir" or "file" as variables when looping through the iterator,

TIP
because they will overwrite builtins.

Chapter 10: Using the Standard Library © 2021 CJ Associates (rev1.0)

Introduction to Python 233

Example

os_walk.py

#!/usr/bin/env python

count number of files and dirs in a directory tree

note "files" includes devices, symbolic links, and pipes
import os

import sys

if sys.platform == 'win32': @
target = 'C:/Users'

else:
target = '/etc'

total_files =0 @
total _dirs = 0

for currdir, subdirs, files in os.walk(target): ®
total _dirs += 1 # increment number of directories seen
total _files += len(files) # add the number of files in this dir

print("{} contains {} dirs and {} files".format(target, total_dirs, total_files)) @
os_walk.py

/etc contains 38 dirs and 343 files

© 2021 CJ Associates (rev1.0) Chapter 10: Using the Standard Library

234 Introduction to Python

os_walk2.py

#!/usr/bin/env python

find files whose size is greater than or equal to specified number of bytes
import sys
import os

MINIMUM_SIZE = 1000

if len(sys.argv) < 2: @
print('Syntax: walk2.py START-DIR')
sys.exit(1)

for currdir, subdirs, files in os.walk(sys.argv[1]):
for file in files: @
fullpath = os.path.join(currdir, file) ®
if os.path.isfile(fullpath): @
fsize = os.path.getsize(fullpath) ®
if fsize >= MINIMUM_SIZE: ®
print("{:40s} {:8d}".format(fullpath, fsize))

os_walk2.py
./xml_from_presidents.py 2458
./boto3_create_folders.py 1324
./dc_carddeck.py 1595
./paramiko_remote_cmd.py 1217
./presidents_hidden_sheet.x1sx 11186
./sa_movie_models.py 1349
./example.zip 56345
./xml_create_knights.py 1396
./.pylintrc 14755
./db_mysql_metadata.py 1431

Chapter 10: Using the Standard Library © 2021 CJ Associates (rev1.0)

Introduction to Python 235
Grabbing data from the web

e import module urllib

urlopen() similar to open()

Iterate through (or read from) URL object

* Use info() method for metadata
Python makes grabbing web pages easy with the urllib module. The urllib.request.urlopen() method
returns an HTTP response object (which also acts like a file object).

Iterating through this object returns the lines in the specified web page (the same lines you would see
with "view source" in a browser).

Since the URL is opened in binary mode; you can use response.read() to download any kind of file
which a URL represents - PDF, MP3, JPG, and so forth.

Grabbing web pages 1is even easier with the requests modules. See

NOTE
read_html_requests.py and read_pdf_requests.py in the EXAMPLES folder.

Example

read_html_urllib.py

#!/usr/bin/env python
import urllib.request
u = urllib.request.urlopen("https://www.python.org")

print(u.info()) @
print()

print(u.read(500).decode()) @

@ .info() returns a dictionary of HTTP headers

@ The text is returned as a bytes object, so it needs to be decoded to a string

© 2021 CJ Associates (rev1.0) Chapter 10: Using the Standard Library

236 Introduction to Python

read_html_urllib.py

Connection: close

Content-Length: 50798

Server: nginx

Content-Type: text/html; charset=utf-8
X-Frame-Options: DENY

Via: 1.1 veqgur, 1.1 varnish, 1.1 varnish
Accept-Ranges: bytes

Date: Wed, @03 Nov 2021 14:17:55 GMT

Age: 1474

X-Served-By: cache-bwi5178-BWI, cache-pdk17841-PDK
X-Cache: HIT, HIT

X-Cache-Hits: 1, 1

X-Timer: S1635949075.092198,VS0, VE1

Vary: Cookie

Strict-Transport-Security: max-age=63072000; includeSubDomains

<!doctype html>

<I--[if 1t IE 7]> <html class="no-js ieb 1t-ie7 1t-ie8 1t-ie9"> <![endif]-->
<I--[if IE 7]> <html class="no-js ie7 1t-ie8 1t-ie9"> <!lendif]-->
<I--[if IE 8]> <html class="no-js ie8 1t-ie9"> <!Tendif]-->
<I--[if gt IE 8]><!--><html class="no-js" lang="en" dir="1tr"> <!--<I[endif]-->

<head>
<meta charset="utf-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<link rel="prefetch" href="//ajax.googleapis.com/ajax/1ibs/jqu

Chapter 10: Using the Standard Library © 2021 CJ Associates (rev1.0)

Introduction to Python 237

Example

read_pdf_urllib.py

#!/usr/bin/env python

import sys
import os
from urllib.request import urlopen
from urllib.error import HTTPError

url to download a PDF file of a NASA ISS brochure

url = "https://www.nasa.qov/pdf/739318main_ISS%20Utilization%20Brochure
%202012%20Screenres%203-8-13.pdf' @

saved_pdf_file = 'nasa_iss.pdf' @

try:
URL = urlopen(url) @

except HTTPError as e: @
print("Unable to open URL:", e)
sys.exit(1)

pdf_contents = URL.read() ®
URL.close()

with open(saved_pdf_file, 'wb') as pdf_in:
pdf_in.write(pdf_contents) ®

if sys.platform == 'win32': @

cmd = saved_pdf_file
elif sys.platform == 'darwin':

cmd = 'open ' + saved_pdf_file
else:

emd = 'acroread ' + saved_pdf_file

0s.system(cmd)

© 2021 CJ Associates (rev1.0) Chapter 10: Using the Standard Library

238 Introduction to Python

Sending email

use smtplib

For attachments, use email.mime.*
* Can provide authentication

» Can work with proxies

It is easy to send a simple email message with Python. The smtplib module allows you to create and
send the message.

To send an attachment, use smptlib plus one or more of the submodules of email.mime, which are
needed to put the message and attachments in proper MIME format.

When sending attachments, be sure to use the .as_string() method on the MIME message

TIP
object. Otherwise you will be sending binary gibberish to your recipient.

Chapter 10: Using the Standard Library © 2021 CJ Associates (rev1.0)

Introduction to Python 239

Example

email_simple.py

#!/usr/bin/env python

from getpass import getpass @

import smtplib @

from email.message import EmailMessage ®
from datetime import datetime

TIMESTAMP = datetime.now().ctime() @

SENDER = 'jstrick@mindspring.com'
RECIPIENTS = ["jstrickler@gmail.com']
MESSAGE_SUBJECT = 'Python SMTP example'

MESSAGE_BODY = """
Hello at {}.

Testing email from Python
"""_format(TIMESTAMP)

SMTP_USER = 'pythonclass'
SMTP_PASSWORD = getpass("Enter SMTP server password:") ®

smtpserver = smtplib.SMTP("smtp2go.com", 2525) ®
smtpserver.login(SMTP_USER, SMTP_PASSWORD) @

msg = EmailMessage()
msg.set_content(MESSAGE_BODY) ©
msg['Subject'] = MESSAGE_SUBJECT @
msg['from'] = SENDER @

msg['to'] = RECIPIENTS @

try:
smtpserver.send_message(msg) @
except smtplib.SMTPException as err:
print("Unable to send mail:", err)
finally:
smtpserver.quit()
@ module for hiding password
@ module for sending email

® module for creating message

@ get a time string for the current date/time

© 2021 CJ Associates (rev1.0) Chapter 10: Using the Standard Library

240

® get password (not echoed to screen)
® connect to SMTP server

@ log into SMTP server

create empty email message

© add the message body

add the message subject

@ add the sender address

@ add a list of recipients

® send the message

disconnect from SMTP server

Chapter 10: Using the Standard Library

Introduction to Python

© 2021 CJ Associates (rev1.0)

Introduction to Python

email_attach.py

#!/usr/bin/env python

import smtplib

from datetime import datetime

from imghdr import what @

from email.message import EmailMessage @
from getpass import getpass @

SMTP_SERVER = "smtp2go.com" @

SMTP_PORT

SMTP_USER

2525

"pythonclass’

SENDER = 'jstrickemindspring.com'
RECIPIENTS = ['jstrickler@gmail.com']

def

def

def

main():
smtp_server = create_smtp_server()
now = datetime.now()
msg = create_message(
SENDER,
RECIPIENTS,
'"Here is your attachment',

241

'Testing email attachments from python class at {}\n\n'.format(now),

)

add_text_attachment('../DATA/parrot.txt", msg)
add_image_attachment('../DATA/felix_auto.jpeg', msg)
send_message(smtp_server, msg)

create_message(sender, recipients, subject, body):
msg = EmailMessage() ®

msg.set_content(body) ®

msg['From'] = sender

msg['To'] = recipients

msg['Subject'] = subject

return msg

add_text_attachment(file_name, message):

with open(file_name) as file_in: @
attachment_data = file_in.read()

message.add_attachment(attachment_data) ®

© 2021 CJ Associates (rev1.0)

Chapter 10: Using the Standard Library

242 Introduction to Python

def add_image_attachment(file_name, message):
with open(file_name, 'rb") as file_in: ©
attachment_data = file_in.read()
image_type = what(None, h=attachment_data) @
message.add_attachment(attachment_data, maintype='image', subtype=image_type) @

def create_smtp_server():
password = getpass("Enter SMTP server password:") @
smtpserver = smtplib.SMTP(SMTP_SERVER, SMTP_PORT) @
smtpserver.login(SMTP_USER, password)

return smtpserver

def send_message(server, message):
try:
server.send_message(message) @©®
finally:
server.quit()

if name_ == "' main__'
main()

Chapter 10: Using the Standard Library © 2021 CJ Associates (rev1.0)

Introduction to Python 243

@ module to determine image type
@ module for creating email message
® module for reading password privately

@ global variables for external information (IRL should be from environment — command line, config
file, etc.)

® create instance of EmailMessage to hold message

® set content (message text) and various headers

@ read data for text attachment

add text attachment to message

@ read data for binary attachment

get type of binary data

@ add binary attachment to message, including type and subtype (e.g., "image/jpg)"
® get password from user (don’t hardcode sensitive data in script)

® create SMTP server connection

log into SMTP connection

® send message

© 2021 CJ Associates (rev1.0) Chapter 10: Using the Standard Library

244

math functions

e use the math module

* Provides functions and constants

Python provides many math functions. It also provides constants pi and e.

Table 14. Math functions

sqrt(x)
exp(x)
log(x)
log10(x)
sin(x)
cos(x)
tan(x)
asin(x)
acos(x)
atan(x)
fabs(x)
ceil(x)
floor(x)
degrees(x)

radians(x)

Returns the square root of x
Return ex

Returns the natural log, i.e. Inx
Returns the log to the base 10 of x
Returns the sine of x

Return the cosine of x

Returns the tangent of x

Return the arc sine of x

Return the arc cosine of x

Return the arc tangent of x

Return the absolute value, i.e. the modulus, of x

Rounds x (which is a float) up to next highest integer1

Rounds x (which is a float) down to next lowest integer

converts angle X from radians to degrees

converts angle x from degrees to radians

Introduction to Python

TIP This table is not comprehensive - see docs for math module for some more functions.

For more math and engineering functions, see the external modules numpy and scipy.

Chapter 10: Using the Standard Library

© 2021 CJ Associates (rev1.0)

Introduction to Python 245
Random values

* Use the random module
» Useful methods
o random()
o randint(start,stop)
- randrange(start,limit)
> choice(seq)
> sample(seq,count)

o shuffle(seq)
The random module provides methods based on selected a random number. In addition to random(),
which returns a fractional number between 0 and 1, there are a number of convenience functions.

randint() and randrange() return a random integer within a range of numbers; the difference is that
randint() includes the endpoint of the specified range, and randrange() does not.

choice() returns one element from any of Python’s sequence types; sample() is the same, but returns a
specified number of elements.

shuffle() randomizes a sequence.

© 2021 CJ Associates (rev1.0) Chapter 10: Using the Standard Library

246 Introduction to Python

Example

random_ex.py

#!/usr/bin/env python
import random

fruits = ["pomegranate”, "cherry", "apricot", "date", "apple",
"lemon", "kiwi", "orange", "lime", "watermelon", "guava",
"papaya", "fig", "pear", "banana", "tamarind", "persimmon",
"elderberry", "peach", "blueberry", "lychee", "grape"]

for i in range(10):
print("random():", random.random())
print("randint(1, 2000):", random.randint(1, 2000))
print("randrange(1, 5):", random.randrange(1, 10))
print("choice(fruit):", random.choice(fruits))
print("sample(fruit, 3):", random.sample(fruits, 3))
print()

Chapter 10: Using the Standard Library © 2021 CJ Associates (rev1.0)

Introduction to Python 247

random_ex.py

random(): 0.9000455123129949

randint(1, 2000): 1811

randrange(1, 5): 4

choice(fruit): blueberry

sample(fruit, 3): ['date', 'apple', 'kiwi']

random(): 0.16370354395367936

randint(1, 2000): 556

randrange(1, 5): 7

choice(fruit): orange

sample(fruit, 3): ['lychee', 'blueberry', 'grape']

random(): 0.06119845803103441

randint(1, 2000): 1591

randrange(1, 5): 3

choice(fruit): lemon

sample(fruit, 3): ['apple', 'fig', 'cherry']

random(): 0.5778150891802429

randint(1, 2000): 946

randrange(1, 5): 7

choice(fruit): grape

sample(fruit, 3): ['lime', 'apple', 'persimmon']

random(): 0.9734256016137639

randint(1, 2000): 1237

randrange(1, 5): 2

choice(fruit): grape

sample(fruit, 3): ['persimmon', 'watermelon', 'kiwi']

© 2021 CJ Associates (rev1.0) Chapter 10: Using the Standard Library

248 Introduction to Python

Dates and times

» Use the datetime module
» Provides several classes
o datetime
o date
o time

o timedelta

Python provides the datetime module for manipulating dates and times. Once you have created date or
time objects, you can combines them and extract the time units you need.

Chapter 10: Using the Standard Library © 2021 CJ Associates (rev1.0)

Introduction to Python 249

Example

datetime_ex.py

#!/usr/bin/env python
from datetime import datetime, date, timedelta

today = date.today()

print("today:", today) @
print("type(today): {}".format(type(today)))
print("today.month: {}".format(today.month))
print("today.day: {}".format(today.day))
print("today.year: {}".format(today.year))
print()

now = datetime.now() @

print("now: {}".format(now))
print("now.day:", now.day) ®
print("now.month:", now.month)
print("now.year:", now.year)
print("now.hour:", now.hour)
print("now.minute:", now.minute)
print("now.second:", now.second)
print("now.microsecond:", now.microsecond)
print()

d1
d2

datetime(2018, 6, 13, 4, 55, 27, 8082) @
datetime(2018, 8, 24)

d3=d2-d1 ®

print("raw time delta:", d3)
print("time delta days:", d3.days) ®

interval = timedelta(10) @
print("interval:", interval)

d4 = d2 + interval

d5 = d2 - interval
print("d2 + interval:", d4)
print("d2 - interval:", d5)
print()

t1 = datetime(2016, 8, 24, 10, 4, 34) ©

© 2021 CJ Associates (rev1.0) Chapter 10: Using the Standard Library

250 Introduction to Python

t2
t3

datetime(2018, 8, 24, 22, 8, 1)
t2 - t1

print("datetime(2016, 8, 24, 10, 4, 34):", t1)
print("datetime(2018, 8, 24, 22, 8, 1):", t2)
print("time diff (t2 - t1):", t3)

Chapter 10: Using the Standard Library © 2021 CJ Associates (rev1.0)

Introduction to Python 251

datetime_ex.py

today: 2021-11-03

type(today): <class 'datetime.date'>
today.month: 11

today.day: 3

today.year: 2021

now: 2021-11-03 10:17:55.243074
now.day: 3

now.month: 11

now.year: 2021

now.hour: 10

now.minute: 17

now.second: 55

now.microsecond: 243074

raw time delta: 71 days, 19:04:32.991918
time delta days: 71

interval: 10 days, 0:00:00

d2 + interval: 2018-09-03 00:00:00

d2 - interval: 2018-08-14 00:00:00

datetime(2016, 8, 24, 10, 4, 34): 2016-08-24 10:04:34

datetime(2018, 8, 24, 22, 8, 1): 2018-08-24 22:08:01
time diff (t2 - t1): 730 days, 12:03:27

© 2021 CJ Associates (rev1.0) Chapter 10: Using the Standard Library

252 Introduction to Python
Zipped archives

 import zipfile for (PK)zipped files
* Get a list of files

» Extract files

The zipfile module allows you to read and write to zipped archives. In either case you first create a
zipfile object; specifying a mode of "w" if you want to create an archive, and a mode of "r" (or nothing)
if you want to read an existing zip file.

There are also modules for gzipped, bzipped, and compressed archives.

Example

zipfile_ex.py

#!/usr/bin/env python

from zipfile import ZipFile, ZIP_DEFLATED
import os.path

reading & extracting

rzip = ZipFile("../DATA/textfiles.zip") @
print(rzip.namelist()) @

ty = rzip.read('tyger.txt').decode() ®
print(ty[:50])

rzip.extract('parrot.txt') @

creating a zip file

wzip = ZipFile("example.zip", mode="w", compression=ZIP_DEFLATED) ®

for base in "parrot tyger knights alice poe_sonnet spam".split():
filename = os.path.join("../DATA", base + ".txt")
print("adding {} as {}".format(filename, base + '.txt'))
wzip.write(filename, base + '.txt') ®

Chapter 10: Using the Standard Library © 2021 CJ Associates (rev1.0)

Introduction to Python 253

@ Open zip file for reading

@ Print list of members in zip file

® Read (raw binary) data from member and convert from bytes to string
@ Extract member

® Create new zip file

® Add member to zip file

zipfile_ex.py

['fruit.txt', "parrot.txt', '"tyger.txt', 'spam.txt']
The Tyger

Tyger! Tyger! burning bright

adding ../DATA/parrot.txt as parrot.txt

adding ../DATA/tyger.txt as tyger.txt

adding ../DATA/knights.txt as knights.txt
adding ../DATA/alice.txt as alice.txt

adding ../DATA/poe_sonnet.txt as poe_sonnet.txt
adding ../DATA/spam.txt as spam.txt

© 2021 CJ Associates (rev1.0) Chapter 10: Using the Standard Library

254 Introduction to Python

Chapter 10 Exercises

Exercise 10-1 (print_sys_info.py)

Use the module os to print out the pathname separator, the PATH variable separator, and the extension
separator for your OS.

Exercise 10-2 (file_size.py)

Write a script that accepts one or more files on the command line, and prints out the size, one file per
line. If any argument is not a file, print out an error message.

TIP You will need the os.path module.

Chapter 10: Using the Standard Library © 2021 CJ Associates (rev1.0)

Introduction to Python 255

Appendix A: Where do I go from here?

Resources for learning Python

These are from Jessica Garson, who, among other things, teaches Python classes at NYU. (Used with
permission).

Run the script where_do_i_go.py to display a web page with live links.

Resources for Learning Python [https:/dev.to/jessicagarson/resources-for-learning-python-hd6]

Just getting started

Here are some resources that can help you get started learning how to code.

Code Newbhie Podcast [https://www.codenewhie.org/podcast]

Dive into Python3 [http://www.diveintopython3.net]

* Learn Python the Hard Way [https://learnpythonthehardway.org/python3]

e Learn Python the Hard Way [https://learnpythonthehardway.org/python3]

* Automate the Boring Stuff with Python [https://automatetheboringstuff.com]

* Automate the Boring Stuff with Python [https://automatetheboringstuff.com]

So you want to be a data scientist?

e Data Wrangling with Python [https://www.amazon.com/Data-Wrangling-Python-Tools-Easier/dp/1491948817]
* Data Analysis in Python [http://www.data-analysis-in-python.org/index.html]

 Titanic: Machine Learning from Disaster [https://www.kaggle.com/c/titanic/discussion/5105]

* Deep Learning with Python [https://www.manning.com/books/deep-learning-with-python]

* How to do X with Python [https://chrisalbon.com/]

* Machine Learning: A Probabilistic Prospective [https://www.amazon.com/Machine-Learning-Probabilistic-
Perspective-Computation/dp/0262018020]

So you want to write code for the web?

e Learn flask, some great resources are listed here [https://www.fullstackpython.com/flask.html]

Django Polls Tutorial [https://docs.djangoproject.com/en/2.0/intro/tutorial01/]

Hello Web App [https://www.amazon.com/Hello-Web-App-Learn-Build-ebook/dp/BO0USMMZ2E/ref=sr_1_1?
ie=UTF8&qid=1510599119&sr=8-1&keywords=hello+web+app]

Hello Web App Intermediate [https://www.amazon.com/Hello-Web-App-Intermediate-Concepts/dp/0986365920]

© 2021 CJ Associates (rev1.0) Appendix A: Where do I go from here?

https://dev.to/jessicagarson/resources-for-learning-python-hd6
https://www.codenewbie.org/podcast
http://www.diveintopython3.net
https://learnpythonthehardway.org/python3
https://learnpythonthehardway.org/python3
https://automatetheboringstuff.com
https://automatetheboringstuff.com
https://www.amazon.com/Data-Wrangling-Python-Tools-Easier/dp/1491948817
http://www.data-analysis-in-python.org/index.html
https://www.kaggle.com/c/titanic/discussion/5105
https://www.manning.com/books/deep-learning-with-python
https://chrisalbon.com/
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020
https://www.fullstackpython.com/flask.html
https://docs.djangoproject.com/en/2.0/intro/tutorial01/
https://www.amazon.com/Hello-Web-App-Learn-Build-ebook/dp/B00U5MMZ2E/ref=sr_1_1?ie=UTF8&qid=1510599119&sr=8-1&keywords=hello+web+app
https://www.amazon.com/Hello-Web-App-Intermediate-Concepts/dp/0986365920

256 Introduction to Python

» Test-Driven-Development for Web Programming [https://www.obeythetestinggoat.com/pages/book.html#toc]

* 2 Scoops of Django [https://www.amazon.com/Two-Scoops-Django-1-11-Practices-ebook/dp/B076D5FKFX/
ref=sr_1_1?s=books&ie=UTF8&qid=1510598897&sr=1-1&keywords=2+scoops+of+django]

HTML and CSS: Design and Build Websites [https://www.amazon.com/HTML-CSS-Design-Build-Websites/dp/
1118008189/ref=sr_1_1?ie=UTF8&qid=1510599157&sr=8-1&keywords=css+and+html]

JavaScript and JQuery [https:/www.amazon.com/JavaScript-JQuery-Interactive-Front-End-Development/dp/
1118531647]

Not sure yet, that’s okay!

Here are some resources for self guided learning. I recommend trying to be very good at Python and
the rest should figure itself out in time.

Python 3 Crash Course [https://www.amazon.com/Python-Crash-Course-Hands-Project-Based/dp/1593276036]
» Base CS Podcast [https://www.codenewbie.org/basecs]

* Writing Idiomatic Python [https://www.amazon.com/Writing-Idiomatic-Python-Jeff-Knupp-ebook/dp/
BOOB5VXMRG]

* Fluent Python [https://www.amazon.com/dp/1491946008?aaxitk=07.Y1C9z70]Jp87fs3ev30Q&pd_rd_i=1491946008&
hsa_cr_id=1406361870001]

* Pro Python [https://www.amazon.com/Pro-Python-Marty-Alchin/dp/1484203356/ref=sr_1_1?s=books&ie=UTF8&
qid=1510598874&sr=1-1&keywords=pro+python]

» Refactoring [https://www.amazon.com/Refactoring-Improving-Design-Existing-Code/dp/0201485672/ref=sr_1_1?
ie=UTF8&qid=1510598784&sr=8-1&keywords=refactoring+martin+fowler]

* Clean Code [https://Www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/o132350882/ref:sr_1_1?
s=books&ie=UTF8&qid=1510598926&sr=1-1&keywords=clean+code]

* Write music with Python, since that’s my favorite way to learn a new language [https:/github.com/

reckoner165/soundmodular]

Appendix A: Where do I go from here? © 2021 CJ Associates (rev1.0)

https://www.obeythetestinggoat.com/pages/book.html#toc
https://www.amazon.com/Two-Scoops-Django-1-11-Practices-ebook/dp/B076D5FKFX/ref=sr_1_1?s=books&ie=UTF8&qid=1510598897&sr=1-1&keywords=2+scoops+of+django
https://www.amazon.com/HTML-CSS-Design-Build-Websites/dp/1118008189/ref=sr_1_1?ie=UTF8&qid=1510599157&sr=8-1&keywords=css+and+html
https://www.amazon.com/JavaScript-JQuery-Interactive-Front-End-Development/dp/1118531647
https://www.amazon.com/Python-Crash-Course-Hands-Project-Based/dp/1593276036
https://www.codenewbie.org/basecs
https://www.amazon.com/Writing-Idiomatic-Python-Jeff-Knupp-ebook/dp/B00B5VXMRG
https://www.amazon.com/dp/1491946008?aaxitk=o7.Y1C9z7oJp87fs3ev30Q&pd_rd_i=1491946008&hsa_cr_id=1406361870001
https://www.amazon.com/Pro-Python-Marty-Alchin/dp/1484203356/ref=sr_1_1?s=books&ie=UTF8&qid=1510598874&sr=1-1&keywords=pro+python
https://www.amazon.com/Refactoring-Improving-Design-Existing-Code/dp/0201485672/ref=sr_1_1?ie=UTF8&qid=1510598784&sr=8-1&keywords=refactoring+martin+fowler
https://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882/ref=sr_1_1?s=books&ie=UTF8&qid=1510598926&sr=1-1&keywords=clean+code
https://github.com/reckoner165/soundmodular

Introduction to Python

Appendix B: Python Bibliography

Title
Data Science

Building machine learning
systems with Python

High Performance Python

Introduction to Machine
Learning with Python

iPython Interactive Computing

and Visualization Cookbook

Learning iPython for Interactive

Computing and Visualization

Learning Pandas

Learning scikit-learn: Machine

Learning in Python

Mastering Machine Learning
with Scikit-learn

Matplotlib for Python Developers

Numpy Beginner’s Guide

Numpy Cookbook

Practical Data Science Cookbook

Python Text Processing with
NLTK 2.0 Cookbook

Scikit-learn cookbook

Python Data Visualization
Cookbook

Python for Data Analysis
Design Patterns

Design Patterns: Elements of
Reusable Object-Oriented
Software

© 2021 CJ Associates (rev1.0)

Author

William Richert, Luis Pedro
Coelho

Mischa Gorlelick and Ian
Ozsvald

Sarah Guido

Cyril Rossant

Cyril Rossant

Michael Heydt

Raul Garreta, Guillermo
Moncecchi

Gavin Hackeling

Sandro Tosi
Ivan Idris
Ivan Idris

Tony Ojeda, Sean Patrick
Murphy, Benjamin Bengfort,
Abhijit Dasgupta

Jacob Perkins

Trent Hauck

Igor Milovanovic

Wes McKinney

Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides

Publisher

Packt Publishing

O’Reilly Media

O’Reilly & Assoc.

Packt Publishing

Packt Publishing

Packt Publishing
Packt Publishing

Packt Publishing

Packt Publishing
Packt Publishing
Packt Publishing
Packt Publishing

Packt Publishing

Packt Publishing
Packt Publishing

O’Reilly & Assoc.

Addison-Wesley Professional

257

Appendix B: Python Bibliography

258

Title

Head First Design Patterns

Learning Python Design Patterns

Mastering Python Design
Patterns

General Python development
Expert Python Programming
Fluent Python

Learning Python, 2nd Ed.

Mastering Object-oriented
Python

Programming Python, 2nd Ed.

Python 3 Object Oriented
Programming

Python Cookbook, 3nd. Ed.

Python Essential Reference, 4th.
Ed.

Python in a Nutshell
Python Programming on Win32

The Python Standard Library By
Example

Misc
Python Geospatial Development

Python High Performance
Programming

Networking

Python Network Programming
Cookbook

Violent Python: A Cookbook for
Hackers, Forensic Analysts,
Penetration Testers and Security
Engineers

Web Scraping with Python

Testing

Appendix B: Python Bibliography

Author

Eric Freeman, Elisabeth Robson,

Bert Bates, Kathy Sierra
Gennadiy Zlobin

Sakis Kasampalis

Tarek Ziadé
Luciano Ramalho
Mark Lutz, David Asher

Stephen F. Lott

Mark Lutz

Dusty Phillips

David Beazley, Brian K. Jones

David M. Beazley

Alex Martelli

Mark Hammond, Andy Robinson

Doug Hellmann

Erik Westra

Gabriele Lanaro

Dr. M. O. Faruque Sarker

T J O’Connor

Ryan Mitchell

Introduction to Python

Publisher
O’Reilly Media

Packt Publishing
Packt Publishing

Packt Publishing
O’Reilly & Assoc.
O’Reilly & Assoc.
Packt Publishing

O’Reilly & Assoc.
Packt Publishing

O’Reilly & Assoc.

Addison-Wesley Professional

O’Reilly & Assoc.
O’Reilly & Assoc.

Addison-Wesley Professional

Packt Publishing
Packt Publishing

Packt Publishing

Syngress

O’Reilly & Assoc.

© 2021 CJ Associates (rev1.0)

Introduction to Python

Title
Python Testing Cookbook

Learning Python Testing

Learning Selenium Testing Tools,

3rd Ed.
Web Development

Building Web Applications with
Flask

Django 1.0 Website Development

Django 1.1 Testing and
Development

Django By Example

Django Design Patterns and Best
Practices

Django Essentials

Django Project Blueprints
Flask Blueprints

Flask by Example

Flask Framework Cookbook
Flask Web Development

Full Stack Python (e-book only)

Full Stack Python Guide to
Deployments (e-book only)

High Performance Django
Instant Flask Web Development

Learning Flask Framework

Mastering Flask

Two Scoops of Django: Best
Practices for Django 1.11

Web Development with Django
Cookbook

© 2021 CJ Associates (rev1.0)

Author

Greg L. Turnquist
Daniel Arbuckle
Raghavendra Prasad MG

Italo Maia

Ayman Hourieh

Karen M. Tracey

Antonio Melé

Arun Ravindran

Samuel Dauzon
Asad Jibran Ahmed
Joel Perras

Gareth Dwyer
Shalabh Aggarwal
Miguel Grinberg
Matt Makai

Matt Makai

Peter Baumgartner, Yann Malet
Ron DuPlain

Matt Copperwaite, Charles O
Leifer

Jack Stouffer

Daniel Roy Greenfeld, Audrey
Roy Greenfeld

Aidas Bendoraitis

Publisher

Packt Publishing
Packt Publishing
Packt Publishing

Packt Publishing

Packt Publishing
Packt Publishing

Packt Publishing
Packt Publishing

Packt Publishing
Packt Publishing
Packt Publishing
Packt Publishing
Packt Publishing
O’Reilly & Assoc.

Gumroad (or free download)

Gumroad (or free download)

Lincoln Loop
Packt Publishing
Packt Publishing

Packt Publishing

Two Scoops Press

Packt Publishing

259

Appendix B: Python Bibliography

260 Introduction to Python

Appendix B: Python Bibliography © 2021 CJ Associates (rev1.0)

Introduction to Python 261

Appendix C: String Formatting

Overview

Strings have a format() method

Allows values to be inserted in strings

e Values can be formatted

Add a field as placeholders for variable

Field syntax: {SELECTOR: FORMATTING}
* Selector can be index or keyword

» Formatting controls alignment, width, padding, etc.
Python provides a powerful and flexible way to format data. The string method format() takes one or
more parameters, which are inserted into the string via placeholders.

The placeholders, called fields, consist of a pair of braces enclosing parameter selectors and formatting
directives.

The selector can be followed by a set of formatting directives, which always start with a colon. The
simplest directives specify the type of variable to be formatted. For instance, {1:d} says to format the
second parameter as an integer; {0:.2f} says to format the first parameter as a float, rounded to two
decimal points.

The formatting part can consist of the following components, which will be explained in detail in the
following pages:

:[[filllalign][sign][#][@][width][,][.precision][type]

© 2021 CJ Associates (rev1.0) Appendix C: String Formatting

262 Introduction to Python
Parameter Selectors

* Null for auto-numbering
* Can be numbers or keywords

o Start at 0 for numbers

Selectors refer to which parameter will be used in a placeholder.

Null (empty) selectors —the most common—will be treated as though they were filled in with
numbers from left to right, beginning with 0. Null selectors cannot be mixed with numbered or named
selectors — either all of the selectors or none of the selectors must be null.

Non-null selectors can be either numeric indices or keywords (strings). Thus, {0} will be replaced with
the first parameter, {4} will be replaced with the fifth parameter, and so on. If using keywords, then
{name} will be replaced by the value of keyword 'name’, and {age} will be replaced by keyword 'age'.

Parameters do not have to be in the same order in which they occur in the string, although they
typically are. The same parameter can be used in multiple fields.

If positional and keyword parameters are both used, the keyword parameters must come after all
positional parameters.

Appendix C: String Formatting © 2021 CJ Associates (rev1.0)

Introduction to Python 263

Example

fmt_params.py

#!/usr/bin/env python

person = 'Bob’
age = 22

print("{0} is {1} years old.".format(person, age)) @

print("{0}, {0}, {0} your boat".format('row')) @

print("The {1}-year-old is {0}".format(person, age)) ®

print("{name} is {age} years old.".format(name=person, age=age)) @

print()

print("{} is {} years old.".format(person, age)) ®

print("{name} is {} and his favorite color is {}".format(22, 'blue', name='Bob')) ®

@ Placeholders can be numbered

@ Placeholders can be reused

® They do not have to be in order (but usually are)

@ Selectors can be named

® Empty selectors are autonumbered (but all selectors must either be empty or explicitly numbered)

® Named and numbered selectors can be mixed

fmt_params.py

Bob is 22 years old.
row, row, row your boat
The 22-year-old is Bob
Bob is 22 years old.

Bob is 22 years old.
Bob is 22 and his favorite color is blue

© 2021 CJ Associates (rev1.0) Appendix C: String Formatting

264 Introduction to Python
f-strings

* fin front of literal strings
* More readable

» Same rules as string.format()

Starting with version 3.6, Python also supports f-strings.

The big difference from the format() method is that the parameters are inside the {} placeholders.
Place formatting details after a : as usual.

Since the parameters are part of the placeholders, parameter numbers are not used.

All of the following formatting tools work with both string.format() and f-strings.

Example

fmt_fstrings.py
#!/usr/bin/env python

person = 'Bob'
age = 22

print(f"{person} is {age} years old.")

print(f"The {age}-year-old is {person}.")
print()

fmt_fstrings.py

Bob is 22 years old.
The 22-year-old is Bob.

Appendix C: String Formatting © 2021 CJ Associates (rev1.0)

Introduction to Python 265
Data types

* Fields can specify data type
* Controls formatting

* Raises error for invalid types
The type part of the format directive tells the formatter how to convert the value. Builtin types have
default formats - 's' for strings, 'd' for integers, 'f' for float.

Some data types can be specified as either upper or lower case. This controls the output of letters. E.g,
{:x} would format the number 48879 as 'beef’, but {:X} would format it as 'BEEF".

The type must generally match the type of the parameter. An integer cannot be formatted with type 's'".
Integers can be formatted as floats, but not the other way around. Only integers may be formatted as
binary, octal, or hexadecimal.

© 2021 CJ Associates (rev1.0) Appendix C: String Formatting

266

Example

fmt_types.py

#!/usr/bin/env python

person = 'Bob’

value = 488

bigvalue = 3735928559
result = 234.5617282027

print('{:s}'.format(person)) ©)

print('{name:s}"'.format(name=person))

print('{:d}'.format(value)) ®
print('{:b}"'.format(value)))
print('{:0}'.format(value)) ®
print('{:x}"'.format(value)) ®
print('{:X}"'.format(bigvalue)) @)
print('{:f}"'.format(result))
print('{:.2f}"'.format(result)) ©

@ String

@ String

® Integer (displayed as decimal)
@ Integer (displayed as binary)
® Integer (displayed as octal)

® Integer (displayed as hex)

@ Integer (displayed as hex with uppercase digits)

Float (defaults to 6 places after the decimal point)

@ Float rounded to 2 decimal places

Appendix C: String Formatting

@

Introduction to Python

© 2021 CJ Associates (rev1.0)

Introduction to Python 267

fmt_types.py

Bob

Bob

488
111101000
750

1e8
DEADBEEF
234.561728
234.56

Table 15. Formatting Types

b Binary — converts number to base 2

C Character — converts to corresponding character, like chr()

d Decimal - outputs number in base 10

e, E Exponent notation. 'e' prints the number in scientific notation using the letter 'e' to indicate

the exponent. 'E' is the same, except it uses the letter 'E'
f,F Floating point. 'F' and 'f" are the same.

g General format. For a given precision p >= 1, rounds the number to p significant digits and
then formats the result in fixed-point or scientific notation, depending on magnitude. This
is the default for numbers

G Same as g, but upper-cases 'e', nan’, and 'inf"

n Same as d, but uses locale setting for number separators

0 Octal - converts number to base 8

S String format. This is the default type for strings

X, X Hexadecimal — convert number to base 16; A-F match case of 'X' or 'X'

% Percentage. Multiplies the number by 100 and displays in fixed ('f') format, followed by a

percent sign.

© 2021 CJ Associates (rev1.0) Appendix C: String Formatting

268 Introduction to Python

Field Widths

* Specified as {0:width.precision}
» Width is really minimum width

* Precision is either maximum width or # decimal points
Fields can specify a minimum width by putting a number before the type. If the parameter is shorted
than the field, it will be padded with spaces, on the left for numbers, and on the right for strings.

The precision is specified by a period followed by an integer. For strings, precision means the
maximum width. Strings longer than the maximum will be truncated. For floating point numbers,
precision means the number of decimal places displayed, which will be padded with zeros as needed.

Width and precision are both optional. The default width for all fields is 0; the default precision for
floating point numbers is 6.

It is invalid to specify precision for an integer.

Appendix C: String Formatting © 2021 CJ Associates (rev1.0)

Introduction to Python 269

Example

fmt_width.py

#!/usr/bin/env python

name = 'Ann Elk'
value = 10000
airspeed = 22.347
note: [] are used to show blank space, and are not part of the formatting
print('[{:s}]'.format(name)) @
print('[{:10s}]".format(name)) @
print('[{:3s}]'.format(name)) ®
print('[{:3.3s}]'.format(name)) @
print()
print('[{:8d}]".format(value))
print('[{:8f}]".format(value))
print('[{:8f}]".format(airspeed))
print('[{:.2f}]".format(airspeed))
print('[{:8.3f}]".format(airspeed))

©OE®Q®O®

@ Default format — no padding

@ Left justify, 10 characters wide

® Left justify, 3 characters wide, displays entire string

@ Left justify, 3 characters wide, truncates string to max width

® Right justify, decimal, 8 characters wide (all numbers are right-justified by default)
® Right justify int as float, 8 characters wide

@ Right justify float as float, 8 characters wide

Right justify, float, 3 decimal places, no maximum width

@ Right justify, float, 3 decimal places, maximum width 8

© 2021 CJ Associates (rev1.0) Appendix C: String Formatting

270 Introduction to Python

fmt_width.py

[Ann Elk]
[Ann Elk]
[Ann Elk]
[Ann]

[10000]
[10000.000000]
[22.347000]
[22.35]

[22.347]

Appendix C: String Formatting © 2021 CJ Associates (rev1.0)

Introduction to Python 271
Alignment

» Alignment within field can be left, right, or centered
o <left align
o >right align
o A center

o =right align but put padding after sign

You can align the data to be formatted. It can be left-aligned (the default), right-aligned, or centered. If
formatting signed numbers, the minus sign can be placed on the left side.

© 2021 CJ Associates (rev1.0) Appendix C: String Formatting

272 Introduction to Python

Example

fmt_align.py

#!/usr/bin/env python

name = "Ann'
value = 12345
nvalue = -12345

®
print('[{0:10s}]".format(name))
print('[{0:<10s}]".format(name))
print('[{0:>10s}]".format(name))
print('[{0:20s}]".format(name))
print()

print('[{0:10d}] [{1:10d}]"'.format(value, nvalue))
print('[{0:>10d}] [{1:>10d}]".format(value, nvalue))
print('[{0:<10d}] [{1:<10d}]".format(value, nvalue))
print('[{0:210d}] [{1:A10d}]".format(value, nvalue))
print('[{0:=10d}] [{1:=10d}]".format(value, nvalue))

O®OO

®@O®Q®

@ note: all of the following print in a field 10 characters widedd
@ Default (left) alignment

® Explicit left alignment

@ Right alignment

® Centered

® Default (right) alignment

@ Explicit right alignment

Left alignment

© Centered

Right alignment, but pad after sign

Appendix C: String Formatting © 2021 CJ Associates (rev1.0)

Introduction to Python

fmt_align.py

[Ann]
[Ann]
[Ann]
[Ann]

[12345] [-12345]
[12345] [-12345]

[12345 1 [-12345
[12345][-12345

[12345] [- 12345]

© 2021 CJ Associates (rev1.0)

273

Appendix C: String Formatting

274 Introduction to Python
Fill characters

* Padding character must precede alignment character
» Default is one space

» Can be any character except }

By default, if a field width is specified and the data does not fill the field, it is padded with spaces. A
character preceding the alignment character will be used as the fill character.

Example

fmt_fill.py

#!/usr/bin/env python

name = "Ann'
value = 123

print('[{:>10s}]".format(name))
print('[{:.>10s}]".format(name))
print('[{:->10s}]".format(name))
print('[{:.10s}]".format(name))
print()
print('[{:10d}]".format(value))
print('[{:010d}]".format(value))
print('[{: _>10d}]"'.format(value))
print("'[{:+>10d}]".format(value))

OO &g

@ Right justify string, pad with space (default)
@ Right justify string, pad with "'

® Right justify string, pad with *-'

@ Left justify string, pad with "'

® Right justify number, pad with space (default
® Right justify number, pad with zeroes

@ Right justfy, pad with '_' (">' required)

Right justfy, pad with '+' (">' required)

Appendix C: String Formatting © 2021 CJ Associates (rev1.0)

Introduction to Python 275

fmt fill.py

[Ann]
| Ann]
[======= Ann]
[Ann]

[123]
[0000000123]
[123]
[+++++++123]

© 2021 CJ Associates (rev1.0) Appendix C: String Formatting

276 Introduction to Python

Signed numbers

» Can pad with any character except '{}'

[}

 Sign can be '+', -, or space

* Only appropriate for numeric types

The sign character follows the alignment character, and can be plus, minus, or space.
A plus sign means always display + or — preceding non-zero numbers.
A minus sign means only display a sign for negative numbers.

A space means display a — for negative numbers and a space for positive numbers.

Appendix C: String Formatting © 2021 CJ Associates (rev1.0)

Introduction to Python 277

Example

fmt_signed.py

#!/usr/bin/env python
values = 123, -321, 14, -2, 0

for value 1in values:
print("default: |{:d}|".format(value)) @
print()

for value 1in values:
print(" plus: [{:+d}|".format(value)) @
print()

for value 1in values:
print(" minus: |{:-d}|".format(value)) ®
print()

for value in values:
print(" space: [{: d}|".format(value)) @
print()
@ default (pipe symbols just to show white space)
@ plus sign puts '+' on positive numbers (and zero) and '-' on negative
® minus sign only puts - on negative numbers

@ space puts -' on negative numbers and space on others

© 2021 CJ Associates (rev1.0) Appendix C: String Formatting

278 Introduction to Python

fmt_signed.py

default: |123]
default: |-321|

default: |14]
default: |-2|
default: |0
plus: |[+123]
plus: |-321]
plus: |+14]
plus: |-2|
plus: |+0]
minus: |123|
minus: |-321|
minus: |14|
minus: |-2|
minus: |0
space: | 123]
space: |-321|
space: | 14|
space: |-2|
space: | 0]

Appendix C: String Formatting © 2021 CJ Associates (rev1.0)

Introduction to Python 279
Parameter Attributes

 Specify elements or properties in template
» No need to repeat parameters

» Works with sequences, mappings, and objects

When specifying container variables as parameters, you can select elements in the format rather than
in the parameter list. For sequences or dictionaries, index on the selector with []. For object attributes,
access the attribute from the selector with . (period).

Example

fmt_attrib.py

#!/usr/bin/env python

from datetime import date

fruits = "apple', 'banana', 'mango’

values = [5, 18, 27, 6]

dday = date(1944, 6, 6)

pythons = {'Idle': "Eric', 'Cleese': 'John', 'Gilliam': 'Terry',
"Chapman': 'Graham', 'Palin': 'Michael', 'Jones': 'Terry'}

print('{0[0]} {0[2]}'.format(fruits)) @

print("{f[0]} {f[2]}'.format(f=fruits)) @

print()

print('{0[0]} {0[2]}'.format(values)) ®

print()

print('{0[Palin]} {0[Cleese]}'.format(pythons)) @
print('{names[Palin]} {names[Cleese]}'.format(names=pythons)) ®
print()

print('{0.month}-{0.day}-{0.year}'.format(dday)) ®

© 2021 CJ Associates (rev1.0) Appendix C: String Formatting

280 Introduction to Python

@ select from tuple

@ named parameter + select from tuple
® Select from list

@ select from dict

® named parameter + select from dict

® select attributes from date

fmt_attrib.py

apple mango
apple mango

527

Michael John
Michael John

6-6-1944

Appendix C: String Formatting © 2021 CJ Associates (rev1.0)

Introduction to Python 281
Formatting Dates

 Special formats for dates

 Pull appropriate values from date/time objects

To format dates, use special date formats. These are placed, like all formatting codes, after a colon. For
instance, {0:%B %d, %Y} will format a parameter (which must be a datetime.datetime or datetime.date)
as "Month DD, YYYY".

Example

fmt_dates.py

#!/usr/bin/env python
from datetime import datetime
event = datetime(2016, 1, 2, 3, 4, 5)

print(event) @
print()

print("Date is {0:%m}/{0:%d}/{0:%y}".format(event)) @
print("Date is {:%m/%d/%y}".format(event)) ®
print("Date is {:%A, %B %d, %Y}".format(event)) @

@ Default string version of date

@ Use three placeholders for month, day, year

® Format month, day, year with a single placeholder

@ Another single placeholder format

© 2021 CJ Associates (rev1.0) Appendix C: String Formatting

282 Introduction to Python

fmt_dates.py

2016-01-02 03:04:05
Date is 01/02/16

Date is 01/02/16
Date is Saturday, January 02, 2016

Appendix C: String Formatting © 2021 CJ Associates (rev1.0)

Introduction to Python 283

Table 16. Date Formats

Directive

Y%a
%A
%b
%B
Y%c
%d
%f
%H
%I
%j
%m
%M
%p
%S
%U

%w

%W

%x
%X
%y
%Y

%2z

%Z

%%

Meaning See
note

Locale’s abbreviated weekday name.

Locale’s full weekday name.

Locale’s abbreviated month name.

Locale’s full month name.

Locale’s appropriate date and time representation.

Day of the month as a decimal number [01,31].

Microsecond as a decimal number [0,999999], zero-padded on the left 1
Hour (24-hour clock) as a decimal number [00,23].

Hour (12-hour clock) as a decimal number [01,12].

Day of the year as a decimal number [001,366].

Month as a decimal number [01,12].

Minute as a decimal number [00,59].

Locale’s equivalent of either AM or PM. 2

Second as a decimal number [00,61]. 3

S

Week number of the year (Sunday as the first day of the week) as a decimal
number [00,53]. All days in a new year preceding the first Sunday are considered
to be in week 0.

Weekday as a decimal number [0(Sunday),6].

Week number of the year (Monday as the first day of the week) as a decimal 4
number [00,53]. All days in a new year preceding the first Monday are considered
to be in week 0.

Locale’s appropriate date representation.

Locale’s appropriate time representation.

Year without century as a decimal number [00,99].
Year with century as a decimal number.

UTC offset in the form +HHMM or -HHMM (empty string if the the object is 5
naive).

Time zone name (empty string if the object is naive).

A literal '%' character.

1. When used with the strptime() method, the %f directive accepts from one to six digits and zero
pads on the right. %fis an extension to the set of format characters in the C standard (but

© 2021 CJ Associates (rev1.0) Appendix C: String Formatting

284 Introduction to Python

implemented separately in datetime objects, and therefore always available).

2. When used with the strptime() method, the %p directive only affects the output hour field if
the %I directive is used to parse the hour.

3. The range really is 0 to 61; according to the Posix standard this accounts for leap seconds and the
(very rare) double leap seconds. The time module may produce and does accept leap seconds since
it is based on the Posix standard, but the datetime module does not accept leap seconds
instrptime() input nor will it produce them in strftime() output.

4. When used with the strptime() method, %U and %W are only used in calculations when the day of
the week and the year are specified.

5. For example, if utcoffset() returns timedeltathours=-3, minutes=-30), %z is replaced with the
string -0330'.

Appendix C: String Formatting © 2021 CJ Associates (rev1.0)

Introduction to Python 285

Run-time formatting

» Use parameters to specify alignment, precision, width, and type

 Use {} placeholders for runtime values for the above

To specify formatting values at runtime, use a {} placeholder for the value, and insert the desired value
in the parameter list. These placeholders are numbered along with the normal placeholders.

© 2021 CJ Associates (rev1.0) Appendix C: String Formatting

286 Introduction to Python

Example

fmt_runtime.py

#!/usr/bin/env python

FIRST _NAME = 'Fred'
LAST _NAME = 'Flintstone'
AGE = 35

print("{0} {1}".format(FIRST_NAME, LAST_NAME))

WIDTH = 12

print("{0:{width}s} {1:{width}s}".format(@
FIRST_NAME,
LAST_NAME,
width=WIDTH,

))

PAD = '-'
WIDTH = 20
ALIGNMENTS = ('<', '>', 'A")

for alignment in ALIGNMENTS:
print("{0:{pad}{align}{width}s} {1:{pad}{align}{width}s}".format(@
FIRST_NAME,
LAST_NAME,
width=WIDTH,
pad=PAD,
align=alignment,

))

Appendix C: String Formatting © 2021 CJ Associates (rev1.0)

Introduction to Python

@ value of WIDTH used in format spec
@ values of PAD, WIDTH, ALIGNMENTS used in format spec

fmt_runtime.py

Fred Flintstone
Fred Flintstone
e e Flintstone----------

© 2021 CJ Associates (rev1.0)

287

Appendix C: String Formatting

288 Introduction to Python
Miscellaneous tips and tricks

* Adding commas to large numbers {n:,}
» Auto-converting parameters to strings (!s)

* Non-decimal prefixes

* Adding commas to large numbers {n:,}
You can add a comma to the format to add commas to numbers greater than 999.
Using a format type of !s will call str() on the parameter and force it to be a string.

Using a # (pound sign) will cause binary, octal, or hex output to be preceded by '0Ob’, '00', or '0x". This is
only valid with type codes b, o, and x.

Example

fmt_misc.py

#!/usr/bin/env python
""'Demonstrate misc formatting'"'
big_number = 2303902390239

print("Big number: {:,d}".format(big_number)) @
print()

value = 27
print("Binary: {:#010b}".format(value)) @
print("Octal: {:#0100}".format(value)) ®

print("Hex: {:#010x}".format(value)) @
print()

Appendix C: String Formatting © 2021 CJ Associates (rev1.0)

Introduction to Python 289

® Add commas for readability
@ Binary format with leading 0b
® Octal format with leading 0o

@ Hexadecimal format with leading 0x

fmt_misc.py

Big number: 2,303,902,390,239

Binary: 0b00011011
Octal: 0000000033
Hex: 0x0000001b

© 2021 CJ Associates (rev1.0) Appendix C: String Formatting

290 Introduction to Python

Appendix C: String Formatting © 2021 CJ Associates (rev1.0)

Introduction to Python

Index

A

Array types, 76
ASClIbetically, 178

B

Boolean operators, 52

break statement, 55

builtin functions, 11
table, 12

C

callback function, 178
command line parameters, 40
conditional expression, 49
continue statement, 55

D

date, 248
dates and times, 248
datetime, 248

E

email.mime, 238

enumerate(), 101

exceptions, 61
else, 66
finally, 68
generic, 64
ignoring, 65
list, 72
multiple, 63

F

file(), 128

flow control, 46

for loop, 85

format, 35

formatting, 35

functions
definition, 156
keyword parameters, 164
keyword-only parameters, 163

© 2021 CJ Associates (rev1.0)

291

named parameters, 164
optional parameters, 162
parameter types, 160
positional parameters, 161
returning values, 159

G

global statement, 173
global variables, 168
grabbing data from the web, 235

H
HTTP download, 235

I

if statement, 48

if-else, 49

if/elif/else, 48

in, 95

indentation, 47

indexing, 82

interpreter attributes, 224
iterable, 89

iterating through a sequence, 85

K
keywords, 11

L

lambda function, 185
lambda functions, 185
launching external programs, 226
legacy string formatting, 39
len(), 98
list methods
table, 79
lists, 78
literal Unicode characters, 18
local variables, 168

M

math functions, 244

Index

292

math operators
table, 30
Math operators and expressions, 28
max(), 98
min(), 98

N

nested sequences, 92
None, 10
numeric literals, 26

(0)

os.path, 228
os.system(, 226
os.walk(, 232

P

Per], 198
popen(, 226
print() function, 32

R

random, 245

random.choice(), 245

random.randint(), 245

random.randrange(), 245

random.sample(), 245

random.shuffle(), 245

raw strings, 17

re.compile(), 204

re.findall(), 201

re.finditer(), 201

re.search(), 201

read(), 128

Reading from the keyboard, 41

readline(), 128

readlines(), 128

Regular Expression Metacharacters
table, 200

regular expressions, 198
about, 198
atoms, 199
branches, 199
compilation flags, 207-208
finding matches, 201

Index

Introduction to Python

grouping, 211

re objects, 204

replacing text, 216

replacing text with callback, 218

special groups, 214

splitting text, 221

syntax overview, 199
Relational Operators, 50
reversed(), 98

S

sending email, 238

sequence functions, 98

Sequences, 76

sh, 226

slicing, 82

smtplib, 238

sort, 178

sorted
key parameter, 180

sorted(, 179

sorted(), 180, 98

sorting
custom key, 182
dictionaries, 192
in place, 195
nested data, 188
reverse, 193-194

standard exception hierarchy, 72

standard I/0O, 225

stderr, 225

stdin, 225

stdio, 225

stdout, 225

string formatting, 35
alignment, 271
data types, 265
dates, 281
field widths, 268
fill characters, 274
misc, 288
parameter attributes, 279
run-time, 285
selectors, 262

© 2021 CJ Associates (rev1.0)

Introduction to Python 293

signed numbers, 276 zipped archives, 252
string literals, 15
string methods, 21, 23
string operators, 21
strings, 14
subprocess, 226
sum(), 98
syntax errors, 60
sys module, 224
sys.executable, 224
sys.modules, 224
sys.path, 224
sys.platform, 224
sys.prefix, 224
sys.version, 224

T

time, 248

timedelta, 248
triple-delimited strings, 16
triple-quoted strings, 16
tuple unpacking, 91

type conversions, 31

U

unicode, 14

urllib module, 235
urlopen(, 235
using try/except, 62

A%

variable scope, 168
variable typing, 13
variables, 10

W

walking directory trees, 232
while loop, 54

whitespace, 47

write(), 128

writelines(), 128

Z

zip(), 98
zipfile, 252

© 2021 CJ Associates (rev1.0) Index

	Introduction to Python
	Table of Contents
	About this course
	Welcome!
	Classroom etiquette
	Course Outline
	Student files
	Extracting the student files
	Examples
	Lab Exercises
	Appendices

	Chapter 1: Getting Started
	Using variables
	Keywords and Builtins
	Variable typing
	Strings
	Single-delimited string literals
	Triple-delimited string literals
	Raw string literals
	Unicode characters
	String operators and methods
	String Methods
	Numeric literals
	Math operators and expressions
	Converting among types
	Writing to the screen
	String Formatting
	Legacy String Formatting
	Command line parameters
	Reading from the keyboard

	Chapter 2: Flow Control
	About flow control
	What’s with the white space?
	if and elif
	Conditional Expressions
	Relational Operators
	Boolean operators
	while loops
	Alternate ways to exit a loop

	Chapter 3: Errors and Exception Handling
	Syntax errors
	Exceptions
	Handling exceptions with try
	Handling multiple exceptions
	Handling generic exceptions
	Ignoring exceptions
	Using else
	Cleaning up with finally

	Chapter 4: Array Types
	About Array Types
	Lists
	Indexing and slicing
	Iterating through a sequence
	Tuples
	Iterable Unpacking
	Nested sequences
	Operators and keywords for sequences
	Functions for all sequences
	Using enumerate()
	The range() function
	List comprehensions
	Generator Expressions

	Chapter 5: Working with Files
	Text file I/O
	Opening a text file
	The with block
	Reading a text file
	Writing to a text file

	Chapter 6: Dictionaries and Sets
	About dictionaries
	When to use dictionaries?
	Creating dictionaries
	Getting dictionary values
	Iterating through a dictionary
	Reading file data into a dictionary
	Counting with dictionaries
	About sets
	Creating Sets
	Working with sets

	Chapter 7: Functions
	Defining a function
	Returning values
	Function parameters
	Variable scope

	Chapter 8: Sorting
	Sorting Overview
	The sorted() function
	Custom sort keys
	Lambda functions
	Sorting nested data
	Sorting dictionaries
	Sorting in reverse
	Sorting lists in place

	Chapter 9: Regular Expressions
	Regular Expressions
	RE Syntax Overview
	Finding matches
	RE Objects
	Compilation Flags
	Groups
	Special Groups
	Replacing text
	Replacing with a callback
	Splitting a string

	Chapter 10: Using the Standard Library
	The sys module
	Interpreter Information
	STDIO
	Launching external programs
	Paths, directories and filenames
	Walking directory trees
	Grabbing data from the web
	Sending email
	math functions
	Random values
	Dates and times
	Zipped archives

	Appendix A: Where do I go from here?
	Resources for learning Python

	Appendix B: Python Bibliography
	Appendix C: String Formatting
	Overview
	Parameter Selectors
	f-strings
	Data types
	Field Widths
	Alignment
	Fill characters
	Signed numbers
	Parameter Attributes
	Formatting Dates
	Run-time formatting
	Miscellaneous tips and tricks

	Index

