
6
Multilayer Structures

Higher-order transfer functions of the type of Eq. (5.7.2) can achieve broader reflection-
less notches and are used in the design of thin-film antireflection coatings, dielectric
mirrors, and optical interference filters [615–677,737–770], and in the design of broad-
band terminations of transmission lines [805–815].

They are also used in the analysis, synthesis, and simulation of fiber Bragg gratings
[771–791], in the design of narrow-band transmission filters for wavelength-division
multiplexing (WDM), and in other fiber-optic signal processing systems [801–804].

They are used routinely in making acoustic tube models for the analysis and synthe-
sis of speech, with the layer recursions being mathematically equivalent to the Levinson
lattice recursions of linear prediction [816–822]. The layer recursions are also used in
speech recognition, disguised as the Schur algorithm.

They also find application in geophysical deconvolution and inverse scattering prob-
lems for oil exploration [823–832].

The layer recursions—known as the Schur recursions in this context—are intimately
connected to the mathematical theory of lossless bounded real functions in the z-plane
and positive real functions in the s-plane and find application in network analysis, syn-
thesis, and stability [836–850].

6.1 Multiple Dielectric Slabs

The general case of arbitrary number of dielectric slabs of arbitrary thicknesses is shown
in Fig. 6.1.1. There are M slabs, M+ 1 interfaces, and M+ 2 dielectric media, including
the left and right semi-infinite media ηa and ηb.

The incident and reflected fields are considered at the left of each interface. The
overall reflection response, Γ1 = E1−/E1+, can be obtained recursively in a variety of
ways, such as by the propagation matrices, the propagation of the impedances at the
interfaces, or the propagation of the reflection responses.

The elementary reflection coefficients ρi from the left of each interface are defined
in terms of the characteristic impedances or refractive indices as follows:

ρi = ηi − ηi−1

ηi + ηi−1
= ni−1 − ni
ni−1 + ni

, i = 1,2, . . . ,M + 1 (6.1.1)
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Fig. 6.1.1 Multilayer dielectric slab structure.

where ηi = η0/ni, and we must use the convention n0 = na and nM+1 = nb, so that
ρ1 = (na − n1)/(na + n1) and ρM+1 = (nM − nb)/(nM + nb). The forward/backward
fields at the left of interface i are related to those at the left of interface i+ 1 by:

[
Ei+
Ei−

]
= 1

τi

[
ejkili ρie−jkili
ρiejkili e−jkili

][
Ei+1,+
Ei+1,−

]
, i =M,M − 1, . . . ,1 (6.1.2)

where τi = 1+ρi and kili is the phase thickness of the ith slab, which can be expressed
in terms of its optical thickness nili and the operating free-space wavelength by kili =
2π(nili)/λ. Assuming no backward waves in the right-most medium, these recursions
are initialized at the (M + 1)st interface as follows:

[
EM+1,+
EM+1,−

]
= 1

τM+1

[
1 ρM+1

ρM+1 1

][
E′M+1,+

0

]
= 1

τM+1

[
1

ρM+1

]
E′M+1,+

It follows that the reflection responses Γi = Ei−/Ei+ will satisfy the recursions:

Γi = ρi + Γi+1e−2jkili

1+ ρiΓi+1e−2jkili
, i =M,M − 1, . . . ,1 (6.1.3)

and initialized by ΓM+1 = ρM+1. Similarly the recursions for the total electric and
magnetic fields, which are continuous across each interface, are given by:

[
Ei
Hi

]
=
[

coskili jηi sinkili
jη−1
i sinkili coskili

][
Ei+1

Hi+1

]
, i =M,M − 1, . . . ,1 (6.1.4)

and initialized at the (M + 1)st interface as follows:

[
EM+1

HM+1

]
=
[

1
η−1
b

]
E′M+1,+

It follows that the impedances at the interfaces, Zi = Ei/Hi, satisfy the recursions:
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Zi = ηi Zi+1 + jηi tankili
ηi + jZi+1 tankili

, i =M,M − 1, . . . ,1 (6.1.5)

and initialized by ZM+1 = ηb. The objective of all these recursions is to obtain the
overall reflection response Γ1 into medium ηa.

The MATLAB function multidiel implements the recursions (6.1.3) for such a multi-
dielectric structure and evaluates Γ1 andZ1 at any desired set of free-space wavelengths.
Its usage is as follows:

[Gamma1,Z1] = multidiel(n,L,lambda); % multilayer dielectric structure

where n,L are the vectors of refractive indices of the M + 2 media and the optical
thicknesses of the M slabs, that is, in the notation of Fig. 6.1.1:

n = [na, n1, n2, . . . , nM,nb], L = [n1l1, n2l2, . . . , nMlM]

and λ is a vector of free-space wavelengths at which to evaluate Γ1. Both the optical
lengths L and the wavelengths λ are in units of some desired reference wavelength, say
λ0, typically chosen at the center of the desired band. The usage of multidiel was
illustrated in Example 5.5.2. Additional examples are given in the next sections.

The layer recursions (6.1.2)–(6.1.5) remain essentially unchanged in the case of oblique
incidence (with appropriate redefinitions of the impedances ηi) and are discussed in
Chap. 7.

Next, we apply the layer recursions to the analysis and design of antireflection coat-
ings and dielectric mirrors.

6.2 Antireflection Coatings

The simplest example of antireflection coating is the quarter-wavelength layer discussed
in Example 5.5.2. Its primary drawback is that it requires the layer’s refractive index to
satisfy the reflectionless condition n1 = √nanb.

For a typical glass substrate with index nb = 1.50, we have n1 = 1.22. Materials with
n1 near this value, such as magnesium fluoride with n1 = 1.38, will result into some,
but minimized, reflection compared to the uncoated glass case, as we saw in Example
5.5.2.

The use of multiple layers can improve the reflectionless properties of the single
quarter-wavelength layer, while allowing the use of real materials. In this section, we
consider three such examples.

Assuming a magnesium fluoride film and adding between it and the glass another
film of higher refractive index, it is possible to achieve a reflectionless structure (at a
single wavelength) by properly adjusting the film thicknesses [617,642].

With reference to the notation of Fig. 5.7.1, we have na = 1, n1 = 1.38, n2 to be
determined, and nb = nglass = 1.5. The reflection response at interface-1 is related to
the response at interface-2 by the layer recursions:

Γ1 = ρ1 + Γ2e−2jk1l1

1+ ρ1Γ2e−2jk1l1
, Γ2 = ρ2 + ρ3e−2jk2l2

1+ ρ2ρ3e−2jk2l2
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The reflectionless condition is Γ1 = 0 at an operating free-space wavelength λ0. This
requires that ρ1 + Γ2e−2jk1l1 = 0, which can be written as:

e2jk1l1 = −Γ2

ρ1
(6.2.1)

Because the left-hand side has unit magnitude, we must have the condition |Γ2| =
|ρ1|, or, |Γ2|2 = ρ2

1, which is written as:∣∣∣∣∣ ρ2 + ρ3e−2jk2l2

1+ ρ2ρ3e−2jk2l2

∣∣∣∣∣
2

= ρ2
2 + ρ2

3 + 2ρ2ρ3 cos 2k2l2
1+ ρ2

2ρ
2
3 + 2ρ2ρ3 cos 2k2l2

= ρ2
1

This can be solved for cos 2k2l2:

cos 2k2l2 =
ρ2

1(1+ ρ2
2ρ

2
3)−(ρ2

2 + ρ2
3)

2ρ2ρ3(1− ρ2
1)

Using the identity, cos 2k2l2 = 2 cos2 k2l2 − 1, we also find:

cos2 k2l2 = ρ2
1(1− ρ2ρ3)2−(ρ2 − ρ3)2

4ρ2ρ3(1− ρ2
1)

sin2 k2l2 = (ρ2 + ρ3)2−ρ2
1(1+ ρ2ρ3)2

4ρ2ρ3(1− ρ2
1)

(6.2.2)

It is evident from these expressions that not every combination of ρ1, ρ2, ρ3 will
admit a solution because the left-hand sides are positive and less than one. If we assume
that n2 > n1 and n2 > nb, then, we will have ρ2 < 0 and ρ3 > 0. Then, it is necessary
that the numerators of above expressions be negative, resulting into the conditions:∣∣∣∣∣ ρ3 + ρ2

1+ ρ2ρ3

∣∣∣∣∣
2

< ρ2
1 <

∣∣∣∣∣ ρ3 − ρ2

1− ρ2ρ3

∣∣∣∣∣
2

The left inequality requires that
√
nb < n1 < nb, which is satisfied with the choices

n1 = 1.38 and nb = 1.5. Similarly, the right inequality is violated—and therefore there
is no solution—if

√
nb < n2 < n1

√
nb, which has the numerical range 1.22 < n2 < 1.69.

Catalan [617,642] used bismuth oxide (Bi2O3) with n2 = 2.45, which satisfies the
above conditions for the existence of solution. With this choice, the reflection coeffi-
cients are ρ1 = −0.16, ρ2 = −0.28, and ρ3 = 0.24. Solving Eq. (6.2.2) for k2l2 and then
Eq. (6.2.1) for k1l1, we find:

k1l1 = 2.0696, k2l2 = 0.2848 (radians)

Writing k1l1 = 2π(n1l1)/λ0, we find the optical lengths:

n1l1 = 0.3294λ0, n2l2 = 0.0453λ0

Fig. 6.2.1 shows the resulting reflection response Γ1 as a function of the free-space
wavelength λ, with λ0 chosen to correspond to the middle of the visible spectrum,
λ0 = 550 nm. The figure also shows the responses of the single quarter-wave slab of
Example 5.5.2.

The reflection responses were computed with the help of the MATLAB function mul-
tidiel. The MATLAB code used to implement this example was as follows:
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Fig. 6.2.1 Two-slab reflectionless coating.

na=1; nb=1.5; n1=1.38; n2=2.45;
n = [na,n1,n2,nb]; la0 = 550;
r = n2r(n);

c = sqrt((r(1)^2*(1-r(2)*r(3))^2 - (r(2)-r(3))^2)/(4*r(2)*r(3)*(1-r(1)^2)));
k2l2 = acos(c);
G2 = (r(2)+r(3)*exp(-2*j*k2l2))/(1 + r(2)*r(3)*exp(-2*j*k2l2));
k1l1 = (angle(G2) - pi - angle(r(1)))/2;
if k1l1 <0, k1l1 = k1l1 + 2*pi; end

L = [k1l1,k2l2]/2/pi;

la = linspace(400,700,101);
Ga = abs(multidiel(n, L, la/la0)).^2 * 100;
Gb = abs(multidiel([na,n1,nb], 0.25, la/la0)).^2 * 100;
Gc = abs(multidiel([na,sqrt(nb),nb], 0.25, la/la0)).^2 * 100;

plot(la, Ga, la, Gb, la, Gc);

The dependence on λ comes through the quantities k1l1 and k2l2, for example:

k1l1 = 2π
n1l1
λ

= 2π
0.3294λ0

λ

Essentially the same method is used in Sec. 12.7 to design 2-section series impedance
transformers. The MATLAB function twosect of that section implements the design.
It can be used to obtain the optical lengths of the layers, and in fact, it produces two
possible solutions:

L12 = twosect(1, 1/1.38, 1/2.45, 1/1.5)=
[

0.3294 0.0453
0.1706 0.4547

]

where each row represents a solution, so that L1 = n1l1/λ0 = 0.1706 and L2 =
n2l2/λ0 = 0.4547 is the second solution. The arguments of twosect are the inverses
of the refractive indices, which are proportional to the characteristic impedances of the
four media.
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Although this design method meets its design objectives, it results in a narrower
bandwidth compared to that of the ideal single-slab case. Varying n2 has only a minor
effect on the shape of the curve. To widen the bandwidth, and at the same time keep
the reflection response low, more than two layers must be used.

A simple approach is to fix the optical thicknesses of the films to some prescribed
values, such as quarter-wavelengths, and adjust the refractive indices hoping that the
required index values come close to realizable ones [617,643]. Fig. 6.2.2 shows the
two possible structures: the quarter-quarter two-film case and the quarter-half-quarter
three-film case.

Fig. 6.2.2 Quarter-quarter and quarter-half-quarter antireflection coatings.

The behavior of the two structures is similar at the design wavelength. For the
quarter-quarter case, the requirement Z1 = ηa implies:

Z1 = η2
1

Z2
= η2

1

η2
2/Z3

= η2
1

η2
2
ηb = ηa

which gives the design condition (see also Example 5.7.1):

na = n2
1

n2
2
nb (6.2.3)

The optical thicknesses are n1l1 = n2l2 = λ0/4. In the quarter-half-quarter case,
the half-wavelength layer acts as an absentee layer, that is, Z2 = Z3, and the resulting
design condition is the same:

Z1 = η2
1

Z2
= η2

1

Z3
= η2

1

η2
3/Z4

= η2
1

η2
3
ηb = ηa

yielding in the condition:

na = n2
1

n2
3
nb (6.2.4)

The optical thicknesses are now n1l1 = n3l3 = λ0/4 and n2l2 = λ0/2. Conditions
(6.2.3) and (6.2.4) are the same as far as determining the refractive index of the second
quarter-wavelength layer. In the quarter-half-quarter case, the index n2 of the half-
wavelength film is arbitrary.
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In the quarter-quarter case, if the first quarter-wave film is magnesium fluoride with
n1 = 1.38 and the glass substrate has nglass = 1.5, condition (6.2.3) gives for the index
for the second quarter-wave layer:

n2 =
√
n2

1nb
na

=
√

1.382 × 1.50

1.0
= 1.69 (6.2.5)

The material cerium fluoride (CeF3) has an index of n2 = 1.63 at λ0 = 550 nm and
can be used as an approximation to the ideal value of Eq. (6.2.5). Fig. 6.2.3 shows the
reflectances |Γ1|2 for the two- and three-layer cases and for the ideal and approximate
values of the index of the second quarter-wave layer.
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Fig. 6.2.3 Reflectances of the quarter-quarter and quarter-half-quarter cases.

The design wavelength was λ0 = 550 nm and the index of the half-wave slab was
n2 = 2.2 corresponding to zirconium oxide (ZrO2). We note that the quarter-half-quarter
case achieves a much broader bandwidth over most of the visible spectrum, for either
value of the refractive index of the second quarter slab.

The reflectances were computed with the help of the function multidiel. The typ-
ical MATLAB code was as follows:

la0 = 550; la = linspace(400,700,101);

Ga = 100*abs(multidiel([1,1.38,2.2,1.63,1.5], [0.25,0.5,0.25], la/la0)).^2;
Gb = 100*abs(multidiel([1,1.38,2.2,1.69,1.5], [0.25,0.5,0.25], la/la0)).^2;
Gc = 100*abs(multidiel([1,1.22,1.5], 0.25, la/la0)).^2;

plot(la, Ga, la, Gb, la, Gc);

These and other methods of designing and manufacturing antireflection coatings for
glasses and other substrates can be found in the vast thin-film literature. An incomplete
set of references is [615–675]. Some typical materials used in thin-film coatings are given
below:
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material n material n
cryolite (Na3AlF6) 1.35 magnesium fluoride (MgF2) 1.38
Silicon dioxide SiO2 1.46 polystyrene 1.60
cerium fluoride (CeF3) 1.63 lead fluoride (PbF2) 1.73
Silicon monoxide SiO 1.95 zirconium oxide (ZrO2) 2.20
zinc sulfide (ZnS) 2.32 titanium dioxide (TiO2) 2.40
bismuth oxide (Bi2O3) 2.45 silicon (Si) 3.50
germanium (Ge) 4.20 tellurium (Te) 4.60

Thin-film coatings have a wide range of applications, such as displays; camera lenses,
mirrors, and filters; eyeglasses; coatings for energy-saving lamps and architectural win-
dows; lighting for dental, surgical, and stage environments; heat reflectors for movie
projectors; instrumentation, such as interference filters for spectroscopy, beam split-
ters and mirrors, laser windows, and polarizers; optics of photocopiers and compact
disks; optical communications; home appliances, such as heat reflecting oven windows;
rear-view mirrors for automobiles.

6.3 Dielectric Mirrors

The main interest in dielectric mirrors is that they have extremely low losses at optical
and infrared frequencies, as compared to ordinary metallic mirrors. On the other hand,
metallic mirrors reflect over a wider bandwidth than dielectric ones and from all incident
angles. However, omnidirectional dielectric mirrors are also possible and have recently
been constructed [760,761]. The omnidirectional property is discussed in Sec. 8.8. Here,
we consider only the normal-incidence case.

A dielectric mirror (also known as a Bragg reflector) consists of identical alternating
layers of high and low refractive indices, as shown in Fig. 6.3.1. The optical thicknesses
are typically chosen to be quarter-wavelength long, that is, nHlH = nLlL = λ0/4 at some
operating wavelength λ0. The standard arrangement is to have an odd number of layers,
with the high index layer being the first and last layer.

Fig. 6.3.1 Nine-layer dielectric mirror.

Fig. 6.3.1 shows the case of nine layers. If the number of layers is M = 2N + 1, the
number of interfaces will be 2N + 2 and the number of media 2N + 3. After the first



6.3. Dielectric Mirrors 193

layer, we may view the structure as the repetition ofN identical bilayers of low and high
index. The elementary reflection coefficients alternate in sign as shown in Fig. 6.3.1 and
are given by

ρ = nH − nL
nH + nL

, −ρ = nL − nH
nL + nH

, ρ1 = na − nH
na + nH

, ρ2 = nH − nb
nH + nb

(6.3.1)

The substrate nb can be arbitrary, even the same as the incident medium na. In
that case, ρ2 = −ρ1. The reflectivity properties of the structure can be understood by
propagating the impedances from bilayer to bilayer. For the example of Fig. 6.3.1, we
have for the quarter-wavelength case:

Z2 =
η2
L
Z3

= η2
L
η2
H
Z4 =

(
nH
nL

)2

Z4 =
(
nH
nL

)4

Z6 =
(
nH
nL

)6

Z8 =
(
nH
nL

)8

ηb

Therefore, after each bilayer, the impedance decreases by a factor of (nL/nH)2.
After N bilayers, we will have:

Z2 =
(
nH
nL

)2N
ηb (6.3.2)

Using Z1 = η2
H/Z2, we find for the reflection response at λ0:

Γ1 = Z1 − ηa
Z1 + ηa

=
1−

(
nH
nL

)2N n2
H

nanb

1+
(
nH
nL

)2N n2
H

nanb

(6.3.3)

It follows that for large N, Γ1 will tend to −1, that is, 100 % reflection.

Example 6.3.1: For nine layers, 2N + 1 = 9, or N = 4, and nH = 2.32, nL = 1.38, and na =
nb = 1, we find:

Γ1 =
1−

(
2.32

1.38

)8

2.322

1+
(

2.32

1.38

)8

2.322

= −0.9942 ⇒ |Γ1|2 = 98.84 percent

ForN = 8, or 17 layers, we have Γ1 = −0.9999 and |Γ1|2 = 99.98 percent. If the substrate
is glass with nb = 1.52, the reflectances change to |Γ1|2 = 98.25 percent for N = 4, and
|Γ1|2 = 99.97 percent for N = 8. ��

To determine the bandwidth around λ0 for which the structure exhibits high reflec-
tivity, we work with the layer recursions (6.1.2). Because the bilayers are identical, the
forward/backward fields at the left of one bilayer are related to those at the left of the
next one by a transition matrix F, which is the product of two propagation matrices of
the type of Eq. (6.1.2). The repeated application of the matrix F takes us to the right-most
layer. For example, in Fig. 6.3.1 we have:[

E2+
E2−

]
= F

[
E4+
E4−

]
= F2

[
E6+
E6−

]
= F3

[
E8+
E8−

]
= F4

[
E10+
E10−

]
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where F is the matrix:

F = 1

1+ ρ

[
ejkLlL ρe−jkLlL
ρejkLlL e−jkLlL

]
1

1− ρ

[
ejkHlH −ρe−jkHlH
−ρejkHlH e−jkHlH

]
(6.3.4)

Defining the phase thicknesses δH = kHlH and δL = kLlL, and multiplying the
matrix factors out, we obtain the expression for F:

F = 1

1− ρ2

[
ej(δH+δL) − ρ2ej(δH−δL) −2jρe−jδH sinδL

2jρejδH sinδL e−j(δH+δL) − ρ2e−j(δH−δL)

]
(6.3.5)

By an additional transition matrix F1 we can get to the left of interface-1 and by an
additional matching matrix F2 we pass to the right of the last interface:

[
E1+
E1−

]
= F1

[
E2+
E2−

]
= F1F4

[
E10+
E10−

]
= F1F4F2

[
E′10+

0

]

where F1 and F2 are:

F1 = 1

τ1

[
ejkHlH ρ1e−jkHlH
ρ1ejkHlH e−jkHlH

]
, F2 = 1

τ2

[
1 ρ2

ρ2 1

]
(6.3.6)

where τ1 = 1+ ρ1, τ2 = 1+ ρ2, and ρ1, ρ2 were defined in Eq. (6.3.1). More generally,
for 2N + 1 layers, or N bilayers, we have:

[
E2+
E2−

]
= FN

[
E2N+2,+
E2N+2,−

]
,
[
E1+
E1−

]
= F1FNF2

[
E′2N+2,+

0

]
(6.3.7)

Thus, the properties of the multilayer structure are essentially determined by the
Nth power, FN, of the bilayer transition matrix F. In turn, the behavior of FN is deter-
mined by the eigenvalue structure of F.

Let {λ+, λ−} be the two eigenvalues of F and let V be the eigenvector matrix. Then,
the eigenvalue decomposition of F and FN will be F = VΛV−1 and FN = VΛNV−1, where
Λ = diag{λ+, λ−}. Because F has unit determinant, its two eigenvalues will be inverses
of each other, that is, λ− = 1/λ+, or, λ+λ− = 1.

The eigenvalues λ± are either both real-valued or both complex-valued with unit
magnitude. We can represent them in the equivalent form:

λ+ = ejKl , λ− = e−jKl (6.3.8)

where l is the length of each bilayer, l = lL + lH. The quantity K is referred to as the
Bloch wavenumber. If the eigenvalues λ± are unit-magnitude complex-valued, then K
is real. If the eigenvalues are real, then K is pure imaginary, say K = −jα, so that
λ± = e±jKl = e±αl.

The multilayer structure behaves very differently depending on the nature of K. The
structure is primarily reflecting if K is imaginary and the eigenvalues λ± are real, and
it is primarily transmitting if K is real and the eigenvalues are pure phases. To see this,
we write Eq. (6.3.7) in the form:
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[
E2+
E2−

]
= VΛNV−1

[
E2N+2,+
E2N+2,−

]
⇒ V−1

[
E2+
E2−

]
= ΛNV−1

[
E2N+2,+
E2N+2,−

]
, or,

[
V2+
V2−

]
= ΛN

[
V2N+2,+
V2N+2,−

]

where we defined[
V2+
V2−

]
= V−1

[
E2+
E2−

]
,
[
V2N+2,+
V2N+2,−

]
= V−1

[
E2N+2,+
E2N+2,−

]

We have V2+ = λN+V2N+2,+ and V2− = λN−V2N+2,− = λ−N+ V2N+2,− because ΛN is
diagonal. Thus,

V2N+2,+ = λ−N+ V2+ = e−jKNlV2+ , V2N+2,− = λN+V2− = ejKNlV2− (6.3.9)

The quantityNl is recognized as the total length of the bilayer structure, as depicted
in Fig. 6.3.1. It follows that if K is real, the factor λ−N+ = e−jKNl acts as a propagation
phase factor and the fields transmit through the structure.

On the other hand, if K is imaginary, we have λ−N+ = e−αNl and the fields attenuate
exponentially as they propagate into the structure. In the limit of large N, the trans-
mitted fields attenuate completely and the structure becomes 100% reflecting. For finite
but large N, the structure will be mostly reflecting.

The eigenvalues λ± switch from real to complex, as K switches from imaginary to
real, for certain frequency or wavenumber bands. The edges of these bands determine
the bandwidths over which the structure will act as a mirror.

The eigenvalues are determined from the characteristic polynomial of F, given by
the following expression which is valid for any 2×2 matrix:

det(F − λI)= λ2 − (trF)λ+ detF (6.3.10)

where I is the 2×2 identity matrix. Because (6.3.5) has unit determinant, the eigenvalues
are the solutions of the quadratic equation:

λ2 − (trF)λ+ 1 = λ2 − 2aλ+ 1 = 0 (6.3.11)

where we defined a = (trF)/2. The solutions are:

λ± = a±
√
a2 − 1 (6.3.12)

where it follows from Eq. (6.3.5) that a is given by:

a = 1

2
trF = cos(δH + δL)−ρ2 cos(δH − δL)

1− ρ2
(6.3.13)

Using λ+ = ejKl = a+
√
a2 − 1 = a+ j

√
1− a2, we also find:
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a = cosKl ⇒ K = 1

l
acos(a) (6.3.14)

The sign of the quantity a2− 1 determines whether the eigenvalues are real or com-
plex. The eigenvalues switch from real to complex—equivalently, K switches from imag-
inary to real—when a2 = 1, or, a = ±1. These critical values of K are found from
Eq. (6.3.14) to be:

K = 1

l
acos(±1)= mπ

l
(6.3.15)

where m is an integer. The lowest value is K = π/l and corresponds to a = −1 and to
λ+ = ejKl = ejπ = −1. Thus, we obtain the bandedge condition:

a = cos(δH + δL)−ρ2 cos(δH − δL)
1− ρ2

= −1

It can be manipulated into:

cos2(δH + δL
2

) = ρ2 cos2(δH − δL
2

)
(6.3.16)

The dependence on the free-space wavelength λ or frequency f = c0/λ comes
through δH = 2π(nHlH)/λ and δL = 2π(nLlL)/λ. The solutions of (6.3.16) in λ
determine the left and right bandedges of the reflecting regions.

These solutions can be obtained numerically with the help of the MATLAB function
omniband, discussed in Sec. 8.8. An approximate solution, which is exact in the case of
quarter-wave layers, is given below.

If the high and low index layers have equal optical thicknesses, nHlH = nLlL, such as
when they are quarter-wavelength layers, or when the optical lengths are approximately
equal, we can make the approximation cos

(
(δH − δL)/2

) = 1. Then, (6.3.16) simplifies
into:

cos2(δH + δL
2

) = ρ2 (6.3.17)

with solutions:

cos
(δH + δL

2

) = ±ρ ⇒ δH + δL
2

= π(nHlH + nLlL)
λ

= acos(±ρ)

The solutions for the left and right bandedges and the bandwidth in λ are:

λ1 = π(nHlH + nLlL)
acos(−ρ) , λ2 = π(nHlH + nLlL)

acos(ρ)
, Δλ = λ2 − λ1 (6.3.18)

Similarly, the left/right bandedges in frequency are f1 = c0/λ2 and f2 = c0/λ1:

f1 = c0
acos(ρ)

π(nHlH + nLlL)
, f2 = c0

acos(−ρ)
π(nHlH + nLlL)

(6.3.19)
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Noting that acos(−ρ)= π/2+ asin(ρ) and acos(ρ)= π/2− asin(ρ), the frequency
bandwidth can be written in the equivalent forms:

Δf = f2 − f1 = c0
acos(−ρ)− acos(ρ)
π(nHlH + nLlL)

= c0
2 asin(ρ)

π(nHlH + nLlL)
(6.3.20)

Relative to some desired wavelength λ0 = c0/f0, the normalized bandwidths in
wavelength and frequency are:

Δλ
λ0

= π(nHlH + nLlL)
λ0

[
1

acos(ρ)
− 1

acos(−ρ)

]
(6.3.21)

Δf
f0
= 2λ0 asin(ρ)
π(nHlH + nLlL)

(6.3.22)

Similarly, the center of the reflecting band fc = (f1 + f2)/2 is:

fc
f0
= λ0

2(nHlH + nLlL)
(6.3.23)

If the layers have equal quarter-wave optical lengths at λ0, that is, nHlH = nLlL =
λ0/4, then, fc = f0 and the matrix F takes the simplified form:

F = 1

1− ρ2

[
e2jδ − ρ2 −2jρe−jδ sinδ

2jρejδ sinδ e−2jδ − ρ2

]
(6.3.24)

where δ = δH = δL = 2π(nHlH)/λ = 2π(λ0/4)/λ = (π/2)λ0/λ = (π/2)f/f0. Then,
Eqs. (6.3.21) and (6.3.22) simplify into:

Δλ
λ0

= π
2

[
1

acos(ρ)
− 1

acos(−ρ)

]
,
Δf
f0
= 4

π
asin(ρ) (6.3.25)

Example 6.3.2: Dielectric Mirror With Quarter-Wavelength Layers. Fig. 6.3.2 shows the reflec-
tion response |Γ1|2 as a function of the free-space wavelength λ and as a function of
frequency f = c0/λ. The high and low indices are nH = 2.32 and nL = 1.38, correspond-
ing to zinc sulfide (ZnS) and magnesium fluoride. The incident medium is air and the
substrate is glass with indices na = 1 and nb = 1.52. The left graph depicts the response
for the cases of N = 2,4,8 bilayers, or 2N + 1 = 5,9,17 layers, as defined in Fig. 6.3.1.
The design wavelength at which the layers are quarter-wavelength long is λ0 = 500 nm.

The reflection coefficient is ρ = 0.25 and the ratio nH/nL = 1.68. The wavelength band-
width calculated from Eq. (6.3.25) is Δλ = 168.02 nm and has been placed on the graph at
an arbitrary reflectance level. The left/right bandedges are λ1 = 429.73, λ2 = 597.75 nm.
The bandwidth covers most of the visible spectrum. As the number of bilayersN increases,
the reflection response becomes flatter within the bandwidth Δλ, and has sharper edges
and tends to 100%. The bandwidth Δλ represents the asymptotic width of the reflecting
band.

The right figure depicts the reflection response as a function of frequency f and is plotted
in the normalized variable f/f0. Because the phase thickness of each layer is δ = πf/2f0
and the matrix F is periodic in δ, the mirror behavior of the structure will occur at odd
multiples of f0 (or odd multiples of π/2 for δ.) As discussed in Sec. 6.6, the structure acts
as a sampled system with sampling frequency fs = 2f0, and therefore, f0 = fs/2 plays the
role of the Nyquist frequency.
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Fig. 6.3.2 Dielectric mirror with quarter-wavelength layers.

The typical MATLAB code used to generate these graphs was:

na = 1; nb = 1.52; nH = 2.32; nL = 1.38; % refractive indices

LH = 0.25; LL = 0.25; % optical thicknesses in units of λ0

la0 = 500; % λ0 in units of nm

rho = (nH-nL)/(nH+nL); % reflection coefficient ρ

la2 = pi*(LL+LH)*1/acos(rho) * la0; % right bandedge

la1 = pi*(LL+LH)*1/acos(-rho) * la0; % left bandedge

Dla = la2-la1; % bandwidth

N = 8; % number of bilayers

n = [na, nH, repmat([nL,nH], 1, N), nb]; % indices for the layers A|H(LH)N|G
L = [LH, repmat([LL,LH], 1, N)]; % lengths of the layers H(LH)N

la = linspace(300,800,501); % plotting range is 300 ≤ λ ≤ 800 nm

Gla = 100*abs(multidiel(n,L,la/la0)).^2; % reflectance as a function of λ
figure; plot(la,Gla);

f = linspace(0,6,1201); % frequency plot over 0 ≤ f ≤ 6f0

Gf = 100*abs(multidiel(n,L,1./f)).^2; % reflectance as a function of f
figure; plot(f,Gf);

Note that the function repmat replicates the LH bilayer N times. The frequency graph
shows only the case of N = 8. The bandwidth Δf , calculated from (6.3.25), has been
placed on the graph. The maximum reflectance (evaluated at odd multiples of f0) is equal
to 99.97%. ��

Example 6.3.3: Dielectric Mirror with Unequal-Length Layers. Fig. 6.3.3 shows the reflection
response of a mirror having unequal optical lengths for the high and low index films.

The parameters of this example correspond very closely to the recently constructed om-
nidirectional dielectric mirror [760], which was designed to be a mirror over the infrared
band of 10–15 μm. The number of layers is nine and the number of bilayers,N = 4. The in-
dices of refraction are nH = 4.6 and nL = 1.6 corresponding to Tellurium and Polystyrene.
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Fig. 6.3.3 Dielectric mirror with unequal optical thicknesses.

Their ratio is nH/nL = 2.875 and the reflection coefficient, ρ = 0.48. The incident medium
and substrate are air and NaCl (n = 1.48.)

The center wavelength is taken to be at the middle of the 10–15 μm band, that is, λ0 =
12.5 μm. The lengths of the layers are lH = 0.8 and lL = 1.65 μm, resulting in the
optical lengths (relative to λ0) nHlH = 0.2944λ0 and nLlL = 0.2112λ0. The wavelength
bandwidth, calculated from Eq. (6.3.21), is Δλ = 9.07 μm. The typical MATLAB code for
generating the figures of this example was as follows:

la0 = 12.5;
na = 1; nb = 1.48; % NaCl substrate

nH = 4.6; nL = 1.6; % Te and PS

lH = 0.8; lL = 1.65; % physical lengths lH, lL
LH = nH*lH/la0, LL = nL*lL/la0; % optical lengths in units of λ0

rho = (nH-nL)/(nH+nL); % reflection coefficient ρ

la2 = pi*(LL+LH)*1/acos(rho) * la0; % right bandedge

la1 = pi*(LL+LH)*1/acos(-rho) * la0; % left bandedge

Dla = la2-la1; % bandwidth

la = linspace(5,25,401); % equally-spaced wavelengths

N = 4;
n = [na, nH, repmat([nL,nH], 1, N), nb]; % refractive indices of all media

L = [LH, repmat([LL,LH], 1, N)]; % optical lengths of the slabs

G = 100 * abs(multidiel(n,L,la/la0)).^2; % reflectance

plot(la,G);

The bandwidth Δλ shown on the graph is wider than that of the omnidirectional mirror
presented in [760], because our analysis assumes normal incidence only. The condition
for omnidirectional reflectivity for both TE and TM modes causes the bandwidth to narrow
by about half of what is shown in the figure. The reflectance as a function of frequency
is no longer periodic at odd multiples of f0 because the layers have lengths that are not
equal to λ0/4. The omnidirectional case is discussed in Example 8.8.3.
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The maximum reflectivity achieved within the mirror bandwidth is 99.99%, which is better
than that of the previous example with 17 layers. This can be explained because the ratio
nH/nL is much larger here. ��

Although the reflectances in the previous two examples were computed with the help
of the MATLAB function multidiel, it is possible to derive closed-form expressions for
Γ1 that are valid for any number of bilayers N. Applying Eq. (6.1.3) to interface-1 and
interface-2, we have:

Γ1 = ρ1 + e−2jδHΓ2

1+ ρ1e−2jδHΓ2
(6.3.26)

where Γ2 = E2−/E2+, which can be computed from the matrix equation (6.3.7). Thus,
we need to obtain a closed-form expression for Γ2.

It is a general property of any 2×2 unimodular matrix F that its Nth power can
be obtained from the following simple formula, which involves the Nth powers of its
eigenvalues λ±:†

FN =
(
λN+ − λN−
λ+ − λ−

)
F −

(
λN−1+ − λN−1−
λ+ − λ−

)
I =WNF −WN−1I (6.3.27)

where WN = (λN+ − λN−)/(λ+ − λ−). To prove it, we note that the formula holds as a
simple identity when F is replaced by its diagonal version Λ = diag{λ+, λ−}:

ΛN =
(
λN+ − λN−
λ+ − λ−

)
Λ−

(
λN−1+ − λN−1−
λ+ − λ−

)
I (6.3.28)

Eq. (6.3.27) then follows by multiplying (6.3.28) from left and right by the eigenvector
matrix V and using F = VΛV−1 and FN = VΛNV−1. Defining the matrix elements of F
and FN by

F =
[
A B
B∗ A∗

]
, FN =

[
AN BN
B∗N A∗N

]
, (6.3.29)

it follows from (6.3.27) that:

AN = AWN −WN−1 , BN = BWN (6.3.30)

where we defined:

A = ej(δH+δL) − ρ2ej(δH−δL)

1− ρ2
, B = −2jρe−jδH sinδL

1− ρ2
(6.3.31)

Because F and FN are unimodular, their matrix elements satisfy the conditions:

|A|2 − |B|2 = 1 , |AN|2 − |BN|2 = 1 (6.3.32)

The first follows directly from the definition (6.3.29), and the second can be verified
easily. It follows now that the product FNF2 in Eq. (6.3.7) is:

†The coefficients WN are related to the Chebyshev polynomials of the second kind Um(x) through
WN = UN−1(a)= sin

(
N acos(a)

)
/
√

1− a2 = sin(NKl)/ sin(Kl).
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FNF2 = 1

τ2

[
AN + ρ2BN BN + ρ2AN
B∗N + ρ2A∗N A∗N + ρ2B∗N

]

Therefore, the desired closed-form expression for the reflection coefficient Γ2 is:

Γ2 =
B∗N + ρ2A∗N
AN + ρ2BN

= B∗WN + ρ2(A∗WN −WN−1)
AWN −WN−1 + ρ2BWN

(6.3.33)

Suppose now that a2 < 1 and the eigenvalues are pure phases. Then, WN are oscil-
latory as functions of the wavelength λ or frequency f and the structure will transmit.

On the other hand, if f lies in the mirror bands, so that a2 > 1, then the eigenvalues
will be real with |λ+| > 1 and |λ−| < 1. In the limit of large N, WN and WN−1 will
behave like:

WN → λN+
λ+ − λ−

, WN−1 → λN−1+
λ+ − λ−

In this limit, the reflection coefficient Γ2 becomes:

Γ2 → B∗ + ρ2(A∗ − λ−1+ )
A− λ−1+ + ρ2B

(6.3.34)

where we canceled some common diverging factors from all terms. Using conditions
(6.3.32) and the eigenvalue equation (6.3.11), and recognizing that Re(A)= a, it can be
shown that this asymptotic limit of Γ2 is unimodular, |Γ2| = 1, regardless of the value
of ρ2.

This immediately implies that Γ1 given by Eq. (6.3.26) will also be unimodular, |Γ1| =
1, regardless of the value of ρ1. In other words, the structure tends to become a perfect
mirror as the number of bilayers increases.

Next, we discuss some variations on dielectric mirrors that result in (a) multiband
mirrors and (b) longpass and shortpass filters that pass long or short wavelengths, in
analogy with lowpass and highpass filters that pass low or high frequencies.

Example 6.3.4: Multiband Reflectors. The quarter-wave stack of bilayers of Example 6.3.2 can
be denoted compactly as AH(LH)8G (for the case N = 8), meaning ’air’, followed by a
“high-index” quarter-wave layer , followed by four “low/high” bilayers, followed by the
“glass” substrate.

Similarly, Example 6.3.3 can be denoted by A(1.18H)(0.85L1.18H)4G, where the layer
optical lengths have been expressed in units of λ0/4, that is, nLlL = 0.85(λ0/4) and
nHlH = 1.18(λ0/4).

Another possibility for a periodic bilayer structure is to replace one or both of the L or
H layers by integral multiples thereof [619]. Fig. 6.3.4 shows two such examples. In the
first, each H layer has been replaced by a half-wave layer, that is, two quarter-wave layers
2H, so that the total structure is A(2H)(L2H)8G, where na,nb,nH ,nL are the same as in
Example 6.3.2. In the second case, eachH has been replaced by a three-quarter-wave layer,
resulting in A(3H)(L3H)8G.

The mirror peaks at odd multiples of f0 of Example 6.3.2 get split into two or three peaks
each. ��
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Fig. 6.3.4 Dielectric mirrors with split bands.

Example 6.3.5: Shortpass and Longpass Filters. By adding an eighth-wave low-index layer, that
is, a (0.5L), at both ends of Example 6.3.2, we can decrease the reflectivity of the short
wavelengths. Thus, the stack AH(LH)8G is replaced by A(0.5L)H(LH)8(0.5L)G.

For example, suppose we wish to have high reflectivity over the [600,700] nm range and
low reflectivity below 500 nm. The left graph in Fig. 6.3.5 shows the resulting reflectance
with the design wavelength chosen to be λ0 = 650 nm. The parameters na, nb, nH,nL are
the same as in Example 6.3.2
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Fig. 6.3.5 Short- and long-pass wavelength filters.

The right graph of Fig. 6.3.5 shows the stack A(0.5H)L(HL)8(0.5H)G obtained from the
previous case by interchanging the roles of H and L. Now, the resulting reflectance is low
for the higher wavelengths. The design wavelength was chosen to be λ0 = 450 nm. It can
be seen from the graph that the reflectance is high within the band [400,500] nm and low
above 600 nm.

Superimposed on both graphs is the reflectance of the originalAH(LH)8G stack centered
at the corresponding λ0 (dotted curves.)
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Both of these examples can also be thought of as the periodic repetition of a symmetric
triple layer of the form A(BCB)NG. Indeed, we have the equivalences:

A(0.5L)H(LH)8(0.5L)G = A(0.5LH 0.5L)9G

A(0.5H)L(HL)8(0.5H)G = A(0.5HL0.5H)9G

The symmetric triple combination BCB can be replaced by an equivalent single layer, which
facilitates the analysis of such structures [617,645–647,649]. ��

6.4 Propagation Bandgaps

There is a certain analogy between the electronic energy bands of solid state materials
arising from the periodicity of the crystal structure and the frequency bands of dielectric
mirrors arising from the periodicity of the bilayers. The high-reflectance bands play the
role of the forbidden energy bands (in the sense that waves cannot propagate through
the structure in these bands.) Such periodic dielectric structures have been termed
photonic crystals and have given rise to the new field of photonic bandgap structures,
which has grown rapidly over the past ten years with a large number of potential novel
applications [744–770].

Propagation bandgaps arise in any wave propagation problem in a medium with
periodic structure [737–743]. Waveguides and transmission lines that are periodically
loaded with ridges or shunt impedances, are examples of such media [867–871].

Fiber Bragg gratings, obtained by periodically modulating the refractive index of
the core (or the cladding) of a finite portion of a fiber, exhibit high reflectance bands
[771–791]. Quarter-wave phase-shifted fiber Bragg gratings (discussed in the next sec-
tion) act as narrow-band transmission filters and can be used in wavelength multiplexed
communications systems.

Other applications of periodic structures with bandgaps arise in structural engineer-
ing for the control of vibration transmission and stress [792–794], in acoustics for the
control of sound transmission through structures [795–800], and in the construction of
laser resonators and periodic lens systems [872,873]. A nice review of wave propagation
in periodic structures can be found in [738].

6.5 Narrow-Band Transmission Filters

The reflection bands of a dielectric mirror arise from the N-fold periodic replication of
high/low index layers of the type (HL)N, where H,L can have arbitrary lengths. Here,
we will assume that they are quarter-wavelength layers at the design wavelength λ0.

A quarter-wave phase-shifted multilayer structure is obtained by doubling (HL)N

to (HL)N(HL)N and then inserting a quarter-wave layer L between the two groups,
resulting in (HL)NL(HL)N. We are going to refer to such a structure as a Fabry-Perot
resonator (FPR)—it can also be called a quarter-wave phase-shifted Bragg grating.

An FPR behaves like a single L-layer at the design wavelength λ0. Indeed, noting that
at λ0 the combinations LL andHH are half-wave or absentee layers and can be deleted,
we obtain the successive reductions:
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(HL)NL(HL)N → (HL)N−1HLLHL(HL)N−1

→ (HL)N−1HHL(HL)N−1

→ (HL)N−1L(HL)N−1

Thus, the number of theHL layers can be successively reduced, eventually resulting
in the equivalent layer L (at λ0):

(HL)NL(HL)N → (HL)N−1L(HL)N−1 → (HL)N−2L(HL)N−2 → ·· · → L

Adding another L-layer on the right, the structure (HL)NL(HL)NL will act as 2L,
that is, a half-wave absentee layer at λ0. If such a structure is sandwiched between the
same substrate material, say glass, then it will act as an absentee layer, opening up a
narrow transmission window at λ0, in the middle of its reflecting band.

Without the quarter-wave layers L present, the structures G|(HL)N(HL)N|G and
G|(HL)N|G act as mirrors,† but with the quarter-wave layers present, the structure
G|(HL)NL(HL)NL|G acts as a narrow transmission filter, with the transmission band-
width becoming narrower as N increases.

By repeating the FPR (HL)NL(HL)N several times and using possibly different
lengthsN, it is possible to design a very narrow transmission band centered at λ0 having
a flat passband and very sharp edges.

Thus, we arrive at a whole family of designs, where starting with an ordinary dielec-
tric mirror, we may replace it with one, two, three, four, and so on, FPRs:

0. G|(HL)N1|G

1. G|(HL)N1L(HL)N1|L|G

2. G|(HL)N1L(HL)N1|(HL)N2L(HL)N2|G

3. G|(HL)N1L(HL)N1|(HL)N2L(HL)N2|(HL)N3L(HL)N3|L|G

4. G|(HL)N1L(HL)N1|(HL)N2L(HL)N2|(HL)N3L(HL)N3|(HL)N4L(HL)N4|G
(6.5.1)

Note that when an odd number of FPRs (HL)NL(HL)N are used, an extra L layer
must be added at the end to make the overall structure absentee. For an even number
of FPRs, this is not necessary.

Such filter designs have been used in thin-film applications [620–626] and in fiber
Bragg gratings, for example, as demultiplexers for WDM systems and for generating very-
narrow-bandwidth laser sources (typically at λ0 = 1550 nm) with distributed feedback
lasers [781–791]. We discuss fiber Bragg gratings in Sec. 11.4.

In a Fabry-Perot interferometer, the quarter-wave layer L sandwiched between the
mirrors (HL)N is called a “spacer” or a “cavity” and can be replaced by any odd multiple
of quarter-wave layers, for example, (HL)N(5L)(HL)N.

†G denotes the glass substrate.
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Several variations of FPR filters are possible, such as interchanging the role of H
and L, or using symmetric structures. For example, using eighth-wave layers L/2, the
following symmetric multilayer structure will also act like as a single L at λ0:

(
L
2
H
L
2

)N
L
(
L
2
H
L
2

)N

To create an absentee structure, we may sandwich this between two L/2 layers:

L
2

(
L
2
H
L
2

)N
L
(
L
2
H
L
2

)N L
2

This can be seen to be equivalent to (HL)N(2L)(LH)N, which is absentee at λ0.
This equivalence follows from the identities:

L
2

(
L
2
H
L
2

)N
≡ (LH)N L

2(
L
2
H
L
2

)N L
2
≡ L

2
(HL)N

(6.5.2)

Example 6.5.1: Transmission Filter Design with One FPR. This example illustrates the basic
transmission properties of FPR filters. We choose parameters that might closely emu-
late the case of a fiber Bragg grating for WDM applications. The refractive indices of the
left and right substrates and the layers were: na = nb = 1.52, nL = 1.4, and nH = 2.1. The
design wavelength at which the layers are quarter wavelength is taken to be the standard
laser source λ0 = 1550 nm.

First, we compare the cases of a dielectric mirror (HL)N and its phase-shifted version using
a single FPR (cases 0 and 1 in Eq. (6.5.1)), with number of layersN1 = 6. Fig. 6.5.1 shows the
transmittance, that is, the quantity

(
1−|Γ1(λ)|2

)
plotted over the range 1200 ≤ λ ≤ 2000

nm.
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Fig. 6.5.1 Narrowband FPR transmission filters.

We observe that the mirror (case 0) has a suppressed transmittance over the entire reflect-
ing band, whereas the FPR filter (case 1) has a narrow peak at λ0. The asymptotic edges of
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the reflecting band are calculated from Eq. (6.3.18) to be λ1 = 1373.9 nm and λ2 = 1777.9
nm, resulting in a width of Δλ = 404 nm. The MATLAB code used to generated the left
graph was:

na = 1.52; nb = 1.52; nH = 2.1; nL = 1.4;
LH = 0.25; LL = 0.25; % optical thicknesses

la0 = 1550;
la = linspace(1200, 2000, 8001); % 1200 ≤ λ ≤ 2000 nm

N1 = 6;

n1 = repmat([nH,nL],1,N1);
L1 = repmat([LH,LL],1,N1);
n = [na, n1, nb];
L = L1;
G0 = 100*(1 - abs(multidiel(n,L,la/la0)).^2); % no phase shift

n1 = [repmat([nH,nL],1,N1), nL, repmat([nH,nL],1,N1)];
L1 = [repmat([LH,LL],1,N1), LL, repmat([LH,LL],1,N1)];
n = [na, n1, nL, nb];
L = [L1, LL];
G1 = 100*(1 - abs(multidiel(n,L,la/la0)).^2); % one phase shift

plot(la,G1,la,G0);

The location of the peak can be shifted by making the phase-shift different from λ/4. This
can be accomplished by changing the optical thickness of the middle L-layer to some other
value. The right graph of Fig. 6.5.1 shows the two cases where that length was chosen to
be nLlL = (0.6)λ0/4 and (1.3)λ0/4, corresponding to phase shifts of 54o and 117o. ��

Example 6.5.2: Transmission Filter Design with Two FPRs. Fig. 6.5.2 shows the transmittance
of a grating with two FPRs (case 2 of Eq. (6.5.1)). The number of bilayers wereN1 = N2 = 8
in the first design, and N1 = N2 = 9 in the second.
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Fig. 6.5.2 Narrow-band transmission filter made with two FPRs.

The resulting transmittance bands are extremely narrow. The plotting scale is only from
1549 nm to 1551 nm. To see these bands in the context of the reflectance band, the
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transmittance (forN1 = N2 = 8) is plotted on the right graph over the range [1200,2000]
nm, which includes the full reflectance band of [1373.9,1777.9] nm.

Using two FPRs has the effect of narrowing the transmittance band and making it somewhat
flatter at its top. ��

Example 6.5.3: Transmission Filter Design with Three and Four FPRs. Fig. 6.5.3 shows the trans-
mittance of a grating with three FPRs (case 3 of Eq. (6.5.1)). A symmetric arrangement of
FPRs was chosen such that N3 = N1.
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Fig. 6.5.3 Transmission filters with three FPRs of equal and unequal lengths.

The left graph shows the transmittances of the two design cases N1 = N2 = N3 = 8 and
N1 = N2 = N3 = 9, so that all the FPRs have the same lengths. The transmission band is
now flatter but exhibits some ripples. To get rid of the ripples, the length of the middle
FPR is slightly increased. The right graph shows the case N1 = N3 = 8 and N2 = 9, and
the case N1 = N3 = 9 and N2 = 10.

Fig. 6.5.4 shows the case of four FPRs (case 4 in Eq. (6.5.1).) Again, a symmetric arrangement
was chosen with N1 = N4 and N2 = N3.
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Fig. 6.5.4 Transmission filters with four FPRs of equal and unequal lengths.
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The left graph shows the two cases of equal lengths N1 = N2 = N3 = N4 = 8 and
N1 = N2 = N3 = N4 = 9. The right graphs shows the caseN1 = N4 = 8 andN2 = N4 = 9,
and the case N1 = N4 = 9 and N2 = N3 = 10. We notice again that the equal length cases
exhibit ripples, but increasing the length of the middle FPRs tends to eliminate them. The
typical MATLAB code for generating the case N1 = N4 = 9 and N2 = N3 = 10 was as
follows:

na = 1.52; nb = 1.52; nH = 2.1; nL = 1.4;
LH = 0.25; LL = 0.25;
la0 = 1550;
la = linspace(1549, 1551, 501);

N1 = 9; N2 = 10; N3 = N2; N4 = N1;

n1 = [repmat([nH,nL],1,N1), nL, repmat([nH,nL],1,N1)];
n2 = [repmat([nH,nL],1,N2), nL, repmat([nH,nL],1,N2)];
n3 = [repmat([nH,nL],1,N3), nL, repmat([nH,nL],1,N3)];
n4 = [repmat([nH,nL],1,N4), nL, repmat([nH,nL],1,N4)];
L1 = [repmat([LH,LL],1,N1), LL, repmat([LH,LL],1,N1)];
L2 = [repmat([LH,LL],1,N2), LL, repmat([LH,LL],1,N2)];
L3 = [repmat([LH,LL],1,N3), LL, repmat([LH,LL],1,N3)];
L4 = [repmat([LH,LL],1,N4), LL, repmat([LH,LL],1,N4)];

n = [na, n1, n2, n3, n4, nb];
L = [L1, L2, L3, L4];

G = 100*(1 - abs(multidiel(n,L,la/la0)).^2);
plot(la,G);

The resulting transmittance band is fairly flat with a bandwidth of approximately 0.15 nm,
as would be appropriate for dense WDM systems. The second design case with N1 = 8
and N2 = 9 has a bandwidth of about 0.3 nm.

The effect of the relative lengths N1,N2 on the shape of the transmittance band has been
studied in [787–789]. The equivalence of the low/high multilayer dielectric structures to
coupled-mode models of fiber Bragg gratings has been discussed in [778]. ��

6.6 Equal Travel-Time Multilayer Structures

Here, we discuss the specialized, but useful, case of a multilayer structure whose layers
have equal optical thicknesses, or equivalently, equal travel-time delays, as for exam-
ple in the case of quarter-wavelength layers. Our discussion is based on [816] and on
[823,824].

Fig. 6.6.1 depicts such a structure consisting of M layers. The media to the left and
right are ηa and ηb and the reflection coefficients ρi at the M + 1 interfaces are as in
Eq. (6.1.1). We will discuss the general case when there are incident fields from both the
left and right media.
Let Ts denote the common two-way travel-time delay, so that,

2n1l1
c0

= 2n2l2
c0

= · · · = 2nMlM
c0

= Ts (6.6.1)
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Fig. 6.6.1 Equal travel-time multilayer structure.

Then, all layers have a common phase thickness, that is, for i = 1,2, . . . ,M:

δ = kili = ωnili
c0

= 1

2
ωTs (6.6.2)

where we wrote ki = ω/ci = ωni/c0. The layer recursions (6.1.2)–(6.1.5) simplify
considerably in this case. These recursions and other properties of the structure can be
described using DSP language.

Because the layers have a common roundtrip time delay Ts, the overall structure will
act as a sampled system with sampling periodTs and sampling frequency fs = 1/Ts. The
corresponding “Nyquist frequency”, f0 = fs/2, plays a special role. The phase thickness
δ can be expressed in terms of f and f0 as follows:

δ = 1

2
ωTs = 1

2
2πf

1

fs
= π f

fs
= π

2

f
f0

Therefore, at f = f0 (and odd multiples thereof), the phase thickness will be π/2 =
(2π)/4, that is, the structure will act as quarter-wave layers. Defining the z-domain
variable:

z = e2jδ = ejωTs = e2jkili (6.6.3)

we write Eq. (6.1.2) in the form:

[
Ei+
Ei−

]
= z1/2

τi

[
1 ρiz−1

ρi z−1

][
Ei+1,+
Ei+1,−

]
, i =M,M − 1, . . . ,1 (6.6.4)

We may rewrite it compactly as:

Ei(z)= Fi(z)Ei+1(z) (6.6.5)

where we defined:

Fi(z)= z1/2

τi

[
1 ρiz−1

ρi z−1

]
, Ei(z)=

[
Ei+(z)
Ei−(z)

]
(6.6.6)

The transition matrix Fi(z) has two interesting properties. Defining the complex
conjugate matrix F̄i(z)= Fi(z−1), we have:
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F̄i(z)TJ3Fi(z)= 1− ρi
1+ ρi

J3 = ηi−1

ηi
J3

F̄i(z)= J1Fi(z)J1

(6.6.7)

where J1, J3 are the 2×2 matrices:†

J1 =
[

0 1
1 0

]
, J3 =

[
1 0
0 −1

]
(6.6.8)

In proving Eq. (6.6.7), we used the result (1−ρ2
i )/τ

2
i = (1−ρi)/(1+ρi)= ηi−1/ηi =

ni/ni−1. The first of Eqs. (6.6.7) implies energy conservation, that is, the energy flux into
medium i is equal to the energy flux into medium i+ 1, or,

1

2ηi−1
(Ēi+Ei+ − Ēi−Ei−)= 1

2ηi
(Ēi+1,+Ei+1,+ − Ēi+1,−Ei+1,−) (6.6.9)

This can be expressed compactly in the form:

Ē
T
i J3Ei = ηi−1

ηi
Ē
T
i+1J3Ei+1

which follows from Eq. (6.6.7):

Ē
T
i J3Ei = Ē

T
i+1F̄

T
i J3Fi Ei+1 = ηi−1

ηi
Ē
T
i+1J3Ei+1

The second of Eqs. (6.6.7) expresses time-reversal invariance and allows the con-
struction of a second, linearly independent, solution of the recursions (6.6.5):

Êi = J1Ēi =
[
Ēi−
Ēi+

]
= J1F̄i(z)Ēi+1 = Fi(z)J1Ēi+1 = Fi(z)Êi+1

The recursions (6.6.5) may be iterated now to the rightmost interface. By an addi-
tional boundary match, we may pass to the right of interface M + 1:

Ei = Fi(z)Fi+1(z)· · ·FM(z)FM+1E′M+1

where we defined the last transition matrix as

FM+1 = 1

τM+1

[
1 ρM+1

ρM+1 1

]
(6.6.10)

More explicitly, we have:

[
Ei+
Ei−

]
=z

(M+1−i)/2

νi

[
1 ρiz−1

ρi z−1

][
1 ρi+1z−1

ρi+1 z−1

]
· · ·

· · ·
[

1 ρMz−1

ρM z−1

][
1 ρM+1

ρM+1 1

][
E′M+1,+
E′M+1,−

] (6.6.11)

†They are recognized as two of the three Pauli spin matrices.
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where we defined νi = τiτi+1 · · ·τMτM+1. We introduce the following definition for
the product of these matrices:

[
Ai(z) Ci(z)
Bi(z) Di(z)

]
=
[

1 ρiz−1

ρi z−1

]
· · ·

[
1 ρMz−1

ρM z−1

][
1 ρM+1

ρM+1 1

]
(6.6.12)

Because there are M + 1− i matrix factors that are first-order in z−1, the quantities
Ai(z), Bi(z), Ci(z), and Di(z) will be polynomials of order M + 1 − i in the variable
z−1. We may also express (6.6.12) in terms of the transition matrices Fi(z):[

Ai(z) Ci(z)
Bi(z) Di(z)

]
= z−(M+1−i)/2νiFi(z)· · ·FM(z)FM+1 (6.6.13)

It follows from Eq. (6.6.7) that (6.6.13) will also satisfy similar properties. Indeed, it
can be shown easily that:

Ḡi(z)TJ3Gi(z)= σ2
i J3, where σ2

i =
M+1∏
m=i

(1− ρ2
m)

GRi (z)= J1Gi(z)J1

(6.6.14)

where Gi(z) and its reverse GRi (z) consisting of the reversed polynomials are:

Gi(z)=
[
Ai(z) Ci(z)
Bi(z) Di(z)

]
, GRi (z)=

[
ARi (z) CRi (z)
BRi (z) DRi (z)

]
(6.6.15)

The reverse of a polynomial is obtained by reversing its coefficients, for example, if
A(z) has coefficient vector a = [a0, a1, a2, a3], then AR(z) will have coefficient vector
aR = [a3, a2, a1, a0]. The reverse of a polynomial can be obtained directly in the z-
domain by the property:

AR(z)= z−dA(z−1)= z−dĀ(z)

where d is the degree of the polynomial. For example, we have:

A(z) = a0 + a1z−1 + a2z−2 + a3z−3

AR(z) = a3 + a2z−1 + a1z−2 + a0z−3 = z−3(a0 + a1z+ a2z2 + a3z3)= z−3Ā(z)

Writing the second of Eqs. (6.6.14) explicitly, we have:

[
ARi (z) CRi (z)
BRi (z) DRi (z)

]
=
[

0 1
1 0

][
Ai(z) Ci(z)
Bi(z) Di(z)

][
0 1
1 0

]
=
[
Di(z) Bi(z)
Ci(z) Ai(z)

]

This implies that the polynomials Ci(z), Di(z) are the reverse of Bi(z), Ai(z), that
is, Ci(z)= BRi (z), Di(z)= ARi (z). Using this result, the first of Eqs. (6.6.14) implies the
following constraint between Ai(z) and Bi(z):

Āi(z)Ai(z)−B̄i(z)Bi(z)= σ2
i (6.6.16)
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Thus, the product of matrices in Eq. (6.6.12) has the form:

[
Ai(z) BRi (z)
Bi(z) ARi (z)

]
=
[

1 ρiz−1

ρi z−1

]
· · ·

[
1 ρMz−1

ρM z−1

][
1 ρM+1

ρM+1 1

]
(6.6.17)

This definition implies also the recursion:

[
Ai(z) BRi (z)
Bi(z) ARi (z)

]
=
[

1 ρiz−1

ρi z−1

][
Ai+1(z) BRi+1(z)
Bi+1(z) ARi+1(z)

]
(6.6.18)

Therefore, each column will satisfy the same recursion:†

[
Ai(z)
Bi(z)

]
=
[

1 ρiz−1

ρi z−1

][
Ai+1(z)
Bi+1(z)

]
(forward recursion) (6.6.19)

for i =M,M − 1, . . . ,1, and initialized by the 0th degree polynomials:

[
AM+1(z)
BM+1(z)

]
=
[

1
ρM+1

]
(6.6.20)

Eq. (6.6.11) reads now:

[
Ei+
Ei−

]
= z(M+1−i)/2

νi

[
Ai(z) BRi (z)
Bi(z) ARi (z)

][
E′M+1,+
E′M+1,−

]
(6.6.21)

Setting i = 1, we find the relationship between the fields incident on the dielectric
structure from the left to those incident from the right:

[
E1+
E1−

]
= zM/2

ν1

[
A1(z) BR1 (z)
B1(z) AR1 (z)

][
E′M+1,+
E′M+1,−

]
(6.6.22)

where ν1 = τ1τ2 · · ·τM+1. The polynomials A1(z) and B1(z) have degree M and
are obtained by the recursion (6.6.19). These polynomials incorporate all the multiple
reflections and reverberatory effects of the structure.

In referring to the overall transition matrix of the structure, we may drop the sub-
scripts 1 and M + 1 and write Eq. (6.6.22) in the more convenient form:

[
E+
E−

]
= zM/2

ν

[
A(z) BR(z)
B(z) AR(z)

][
E′+
E′−

]
(transfer matrix) (6.6.23)

Fig. 6.6.2 shows the general case of left- and right-incident fields, as well as when
the fields are incident only from the left or only from the right.

For both the left- and right-incident cases, the corresponding reflection and trans-
mission responses Γ,T and Γ′,T′ will satisfy Eq. (6.6.23):

[
1
Γ

]
= zM/2

ν

[
A(z) BR(z)
B(z) AR(z)

][
T
0

]

[
0
T′

]
= zM/2

ν

[
A(z) BR(z)
B(z) AR(z)

][
Γ′

1

] (6.6.24)

†Forward means order-increasing: as the index i decreases, the polynomial order M + 1− i increases.
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Fig. 6.6.2 Reflection and transmission responses of a multilayer structure.

Solving for Γ,T, we find:

Γ(z)= B(z)
A(z)

, T(z)= νz−M/2

A(z)
(6.6.25)

Similarly, we find for Γ′,T′:

Γ′(z)= −B
R(z)
A(z)

, T′(z)= ν′z−M/2

A(z)
(6.6.26)

where the constants ν and ν′ are the products of the left and right transmission coeffi-
cients τi = 1+ ρi and τ′i = 1− ρi, that is,

ν =
M+1∏
i=1

τi =
M+1∏
i=1

(1+ ρi) , ν′ =
M+1∏
i=1

τ′i =
M+1∏
i=1

(1− ρi) (6.6.27)

In deriving the expression for T′, we used the result (6.6.16), which for i = 1 reads:

Ā(z)A(z)−B̄(z)B(z)= σ2, where σ2 =
M+1∏
i=1

(1− ρ2
i ) (6.6.28)

Because AR(z)= z−MĀ(z), we can rewrite (6.6.28) in the form:

A(z)AR(z)−B(z)BR(z)= σ2z−M (6.6.29)

Noting that νν′ = σ2 and that

ν′

ν
=
M+1∏
i=1

1− ρi
1+ ρi

=
M+1∏
i=1

ηi−1

ηi
= ηa
ηb
,

we may replace ν and ν′ by the more convenient forms:

ν = σ
√
ηb
ηa
, ν′ = σ

√
ηa
ηb

(6.6.30)

Then, the transmission responses T and T′ can be expressed as:
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T(z)=
√
ηb
ηa
T(z), T′(z)=

√
ηa
ηb
T(z), T(z)= σz−M/2

A(z)
(6.6.31)

The magnitude squared of T(z) represents the transmittance, that is, the ratio of
the transmitted to incident powers, whereasT is the corresponding ratio of the electric
fields. Indeed, assuming E′− = 0, we have T = E′+/E+ and find:

Ptransmitted

Pincident
=

1

2ηb
|E′+|2

1

2ηa
|E+|2

= ηa
ηb
|T|2 = |T|2 (6.6.32)

where we used Eq. (6.6.31). Similarly, if the incident fields are from the right, then
assuming E+ = 0, the corresponding transmission coefficient will be T′ = E−/E′−, and
we find for the left-going transmittance:

P′transmitted

P′incident
=

1

2ηa
|E−|2

1

2ηb
|E′−|2

= ηb
ηa
|T′|2 = |T|2 (6.6.33)

Eqs. (6.6.32) and (6.6.33) state that the transmittance is the same from either side of
the structure. This result remains valid even when the slabs are lossy.

The frequency response of the structure is obtained by setting z = ejωTs . Denoting
A(ejωTs) simply by A(ω), we may express Eq. (6.6.28) in the form:

|A(ω)|2 − |B(ω)|2 = σ2 (6.6.34)

This implies the following relationship between reflectance and transmittance:

|Γ(ω)|2 + |T(ω)|2 = 1 (6.6.35)

Indeed, dividing Eq. (6.6.34) by |A(ω)|2 and using Eq. (6.6.31), we have:

1−
∣∣∣∣B(ω)A(ω)

∣∣∣∣
2

= σ2

|A(ω)|2 =
∣∣∣∣∣σe

−jMωTs/2

A(ω)

∣∣∣∣∣
2

⇒ 1− |Γ(ω)|2 = |T(ω)|2

Scattering Matrix

The transfer matrix in Eq. (6.6.23) relates the incident and reflected fields at the left
of the structure to those at the right of the structure. Using Eqs. (6.6.25), (6.6.26), and
(6.6.29), we may rearrange the transfer matrix (6.6.23) into a scattering matrix form that
relates the incoming fields E+, E′− to the outgoing fields E−, E′+. We have:

[
E−
E′+

]
=
[
Γ(z) T′(z)
T(z) Γ′(z)

][
E+
E′−

]
(scattering matrix) (6.6.36)

The elements of the scattering matrix are referred to as the S-parameters and are
used widely in the characterization of two-port (and multi-port) networks at microwave
frequencies.
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We discuss S-parameters in Sec. 13.1. It is a common convention in the literature to
normalize the fields to the impedances of the left and right media (the generator and
load impedances), as follows:

E± = 1√ηa
E± = E ± ηaH

2
√ηa

, E′± =
1√ηb

E′± =
E′ ± ηbH′

2
√ηb

(6.6.37)

Such normalized fields are referred to as power waves [984]. Using the results of Eq.
(6.6.31), the scattering matrix may be written in terms of the normalized fields in the
more convenient form:

[
E−
E′+

]
=
[
Γ(z) T(z)
T(z) Γ′(z)

][
E+
E′−

]
= S(z)

[
E+
E′−

]
(6.6.38)

so that S(z) is now a symmetric matrix:

S(z)=
[
Γ(z) T(z)
T(z) Γ′(z)

]
(scattering matrix) (6.6.39)

One can verify also that Eqs. (6.6.25), (6.6.26), and (6.6.28) imply the following uni-
tarity properties of S(z):

S̄(z)TS(z)= I , S(ω)†S(ω)= I , (unitarity) (6.6.40)

where I is the 2×2 identity matrix, S̄(z)= S(z−1), and S(ω) denotes S(z) with z =
ejωTs , so that S̄(ω)T becomes the hermitian conjugate S(ω)†= S(ω)∗T.

The unitarity condition is equivalent to the power conservation condition that the
net incoming power into the (lossless) multilayer structure is equal to the net outgoing
reflected power from the structure. Indeed, in terms of the power waves, we have:

Pout = 1

2ηa
|E−|2 + 1

2ηb
|E′+|2 =

1

2
|E−|2 + 1

2
|E′+|2

= 1

2

[E∗−,E∗′+ ]
[
E−
E′+

]
= 1

2

[E∗+,E∗′− ]S†S
[
E+
E′−

]
= 1

2

[E∗+,E∗′− ]I
[
E+
E′−

]

= 1

2
|E+|2 + 1

2
|E′−|2 =

1

2ηa
|E+|2 + 1

2ηb
|E′−|2 = Pin

Layer Recursions

Next, we discuss the layer recursions. The reflection responses at the successive in-
terfaces of the structure are given by similar equations to (6.6.25). We have Γi(z)=
Bi(z)/Ai(z) at the ith interface and Γi+1(z)= Bi+1(z)/Ai+1(z) at the next one. Us-
ing Eq. (6.6.19), we find that the responses Γi satisfy the following recursion, which is
equivalent to Eq. (6.1.3):

Γi(z)= ρi + z−1Γi+1(z)
1+ ρiz−1Γi+1(z)

, i =M,M − 1, . . . ,1 (6.6.41)
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It starts at ΓM+1(z)= ρM+1 and ends with Γ(z)= Γ1(z). The impedances at the
interfaces satisfy Eq. (6.1.5), which takes the specialized form in the case of equal phase
thicknesses:

Zi(s)= ηi Zi+1(s)+ηis
ηi + sZi+1(s)

, i =M,M − 1, . . . ,1 (6.6.42)

where we defined the variable s via the bilinear transformation:

s = 1− z−1

1+ z−1
(6.6.43)

Note that if z = e2jδ, then s = j tanδ. It is more convenient to think of the impedances
Zi(s) as functions of the variable s and the reflection responses Γi(z) as functions of
the variable z.

To summarize, given the characteristic impedances {ηa,η1, . . . , ηM,ηb}, equiva-
lently, the refractive indices {n1, n1, . . . , nM} of a multilayered structure, we can com-
pute the corresponding reflection coefficients {ρ1, ρ2, . . . , ρM+1} and then carry out the
polynomial recursions (6.6.19), eventually arriving at the final Mth order polynomials
A(z) and B(z), which define via Eq. (6.6.25) the overall reflection and transmission
responses of the structure.

Conversely, given the final polynomials A1(z)= A(z) and B1(z)= B(z), we invert
the recursion (6.6.19) and “peel off” one layer at a time, until we arrive at the rightmost
interface. In the process, we extract the reflection coefficients {ρ1, ρ2, . . . , ρM+1}, as
well as the characteristic impedances and refractive indices of the structure.

This inverse recursion is based on the property that the reflection coefficients appear
in the first and last coefficients of the polynomials Bi(z) andAi(z). Indeed, if we define
these coefficients by the expansions:

Bi(z)=
M+1−i∑
m=0

bi(m)z−m , Ai(z)=
M+1−i∑
m=0

ai(m)z−m

then, it follows from Eq. (6.6.19) that the first coefficients are:

bi(0)= ρi , ai(0)= 1 (6.6.44)

whereas the last coefficients are:

bi(M + 1− i)= ρM+1 , ai(M + 1− i)= ρM+1ρi (6.6.45)

Inverting the transition matrix in Eq. (6.6.19), we obtain the backward recursion:†

[
Ai+1(z)
Bi+1(z)

]
= 1

1− ρ2
i

[
1 −ρi

−ρiz z

][
Ai(z)
Bi(z)

]
(backward recursion) (6.6.46)

†Backward means order-decreasing: as the index i increases, the polynomial order M + 1− i decreases.
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for i = 1,2, . . . ,M, where ρi = bi(0). This recursion starts with the knowledge ofA1(z)
and B1(z). We note that each step of the recursion reduces the order of the polynomials
by one, until we reach the 0th order polynomials AM+1(z)= 1 and BM+1(z)= ρM+1.

The reverse recursions can also be applied directly to the reflection responses Γi(z)
and wave impedances Zi(s). It follows from Eq. (6.6.41) that the reflection coefficient ρi
can be extracted from Γi(z) if we set z = ∞, that is, ρi = Γi(∞). Then, solving Eq. (6.1.3)
for Γi+1(z), we obtain:

Γi+1(z)= z Γi(z)−ρi
1− ρiΓi(z)

, i = 1,2, . . . ,M (6.6.47)

Similarly, it follows from Eq. (6.6.42) that the characteristic impedance ηi can be
extracted from Zi(s) by setting s = 1, which is equivalent to z = ∞ under the transfor-
mation (6.6.43). Thus, ηi = Zi(1) and the inverse of (6.6.42) becomes:

Zi+1(s)= ηi Zi(s)−sηiηi − sZi(s)
, i = 1,2, . . . ,M (6.6.48)

The necessary and sufficient condition that the extracted reflection coefficients ρi
and the media impedances ηi are realizable, that is, |ρi| < 1 or ηi > 0, is that the
starting polynomial A(z) be a minimum-phase polynomial in z−1, that is, it must have
all its zeros inside the unit circle on the z-plane. This condition is in turn equivalent to
the requirement that the transmission and reflection responses T(z) and Γ(z) be stable
and causal transfer functions.

The order-increasing and order-decreasing recursions Eqs. (6.6.19) and (6.6.46) can
also be expressed in terms of the vectors of coefficients of the polynomials Ai(z) and
Bi(z). Defining the column vectors:

ai =

⎡
⎢⎢⎢⎢⎢⎣

ai(0)
ai(1)

...
ai(M + 1− i)

⎤
⎥⎥⎥⎥⎥⎦ , bi =

⎡
⎢⎢⎢⎢⎢⎣

bi(0)
bi(1)

...
bi(M + 1− i)

⎤
⎥⎥⎥⎥⎥⎦

we obtain for Eq. (6.6.19), with i =M,M − 1, . . . ,1:

ai =
[

ai+1

0

]
+ ρi

[
0

bi+1

]

bi = ρi
[

ai+1

0

]
+
[

0
bi+1

] (forward recursion) (6.6.49)

and initialized at aM+1 = [1] and bM+1 = [ρM+1]. Similarly, the backward recur-
sions (6.6.46) are initialized at the Mth order polynomials a1 = a and b1 = b. For
i = 1,2, . . . ,M and ρi = bi(0), we have:

[
ai+1

0

]
= ai − ρibi

1− ρ2
i[

0
bi+1

]
= −ρiai + bi

1− ρ2
i

(backward recursion) (6.6.50)
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Example 6.6.1: Determine the number of layers M, the reflection coefficients at the M + 1
interfaces, and the refractive indices of the M + 2 media for a multilayer structure whose
overall reflection response is given by:

Γ(z)= B(z)
A(z)

= −0.1− 0.188z−1 − 0.35z−2 + 0.5z−3

1− 0.1z−1 − 0.064z−2 − 0.05z−3

Solution: From the degree of the polynomials, the number of layers is M = 3. The starting
polynomials in the backward recursion (6.6.50) are:

a1 = a =

⎡
⎢⎢⎢⎣

1.000
−0.100
−0.064
−0.050

⎤
⎥⎥⎥⎦ , b1 = b =

⎡
⎢⎢⎢⎣
−0.100
−0.188
−0.350

0.500

⎤
⎥⎥⎥⎦

From the first and last coefficients of b1, we find ρ1 = −0.1 and ρ4 = 0.5. Setting i = 1,
the first step of the recursion gives:

[
a2

0

]
= a1 − ρ1b1

1− ρ2
1

=

⎡
⎢⎢⎢⎣

1.000
−0.120
−0.100

0.000

⎤
⎥⎥⎥⎦ ,

[
0
b2

]
= −ρ1a1 + b1

1− ρ2
1

=

⎡
⎢⎢⎢⎣

0.000
−0.200
−0.360

0.500

⎤
⎥⎥⎥⎦

Thus,

a2 =

⎡
⎢⎣

1.000
−0.120
−0.100

⎤
⎥⎦ , b2 =

⎡
⎢⎣
−0.200
−0.360

0.500

⎤
⎥⎦

The first coefficient of b2 is ρ2 = −0.2 and the next step of the recursion gives:

[
a3

0

]
= a2 − ρ2b2

1− ρ2
2

=

⎡
⎢⎣

1.0
−0.2

0.0

⎤
⎥⎦ ,

[
0
b3

]
= −ρ2a2 + b2

1− ρ2
2

=

⎡
⎢⎣

0.0
−0.4

0.5

⎤
⎥⎦

Thus,

a3 =
[

1.0
−0.2

]
, b3 =

[
−0.4

0.5

]
⇒ ρ3 = −0.4

The last step of the recursion for i = 3 is not necessary because we have already determined
ρ4 = 0.5. Thus, the four reflection coefficients are:

[ρ1, ρ2, ρ3, ρ4]= [−0.1,−0.2,−0.4,0.5]

The corresponding refractive indices can be obtained by solving Eq. (6.1.1), that is, ni =
ni−1(1− ρi)/(1+ ρi). Starting with i = 1 and n0 = na = 1, we obtain:

[na, n1, n2, n3, nb]= [1,1.22,1.83,4.28,1.43]

The same results can be obtained by working with the polynomial version of the recursion,
Eq. (6.6.46). ��
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Example 6.6.2: Consider the quarter-quarter antireflection coating shown in Fig. 6.2.2 with
refractive indices [na, n1, n2, nb]= [1,1.38,1.63,1.50]. Determine the reflection coef-
ficients at the three interfaces and the overall reflection response Γ(z) of the structure.

Solution: In this problem we carry out the forward layer recursion starting from the rightmost
layer. The reflection coefficients computed from Eq. (6.1.1) are:

[ρ1, ρ2, ρ3]= [−0.1597,−0.0831,0.0415]

Starting the forward recursion with a3 = [1] and b3 = [ρ3]= [0.0415], we build the first
order polynomials:

a2 =
[

a3

0

]
+ ρ2

[
0
b3

]
=
[

1.0000
0.0000

]
+ (−0.0831)

[
0.0000
0.0415

]
=
[

1.0000
−0.0034

]

b2 = ρ2

[
a3

0

]
+
[

0
b3

]
= (−0.0831)

[
1.0000
0.0000

]
+
[

0.0000
0.0415

]
=
[
−0.0831

0.0415

]

Then, we build the 2nd order polynomials at the first interface:

a1 =
[

a2

0

]
+ ρ1

[
0
b2

]
=

⎡
⎢⎣

1.0000
0.0098
−0.0066

⎤
⎥⎦ , b1 = ρ1

[
a2

0

]
+
[

0
b2

]
=

⎡
⎢⎣
−0.1597
−0.0825

0.0415

⎤
⎥⎦

Thus, the overall reflection response is:

Γ(z)= Γ1(z)= B1(z)
A1(z)

= −0.1597− 0.0825z−1 + 0.0415z−2

1+ 0.0098z−1 − 0.0066z−2

Applying the reverse recursion on this reflection response would generate the same reflec-
tion coefficients ρ1, ρ2, ρ3. ��

Example 6.6.3: Determine the overall reflection response of the quarter-half-quarter coating of
Fig. 6.2.2 by thinking of the half-wavelength layer as two quarter-wavelength layers of the
same refractive index.

Solution: There are M = 4 quarter-wave layers with refractive indices:

[na, n1, n2, n3, n4, nb]= [1,1.38,2.20,2.20,1.63,1.50]

The corresponding reflection coefficients are:

[ρ1, ρ2, ρ3, ρ4, ρ5]= [−0.1597,−0.2291,0,0.1488,0.0415]

where the reflection coefficient at the imaginary interface separating the two halves of
the half-wave layer is zero. Starting the forward recursion with a5 = [1], b5 = [ρ5]=
[0.0415], we compute the higher-order polynomials:

a4 =
[

a5

0

]
+ ρ4

[
0
b5

]
=
[

1.0000
0.0062

]
, b4 = ρ4

[
a5

0

]
+
[

0
b5

]
=
[

0.1488
0.0415

]

220 6. Multilayer Structures

a3 =
[

a4

0

]
+ ρ3

[
0
b4

]
=

⎡
⎢⎣

1.0000
0.0062
0.0000

⎤
⎥⎦ , b3 = ρ3

[
a4

0

]
+
[

0
b4

]
=

⎡
⎢⎣

0.0000
0.1488
0.0415

⎤
⎥⎦

a2 =
[

a3

0

]
+ ρ2

[
0
b3

]
=

⎡
⎢⎢⎢⎣

1.0000
0.0062
−0.0341
−0.0095

⎤
⎥⎥⎥⎦ , b2 = ρ2

[
a3

0

]
+
[

0
b3

]
=

⎡
⎢⎢⎢⎣
−0.2291
−0.0014

0.1488
0.0415

⎤
⎥⎥⎥⎦

a1 =
[

a2

0

]
+ ρ1

[
0
b2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1.0000
0.0428
−0.0339
−0.0333
−0.0066

⎤
⎥⎥⎥⎥⎥⎥⎦
, b1 = ρ1

[
a2

0

]
+
[

0
b2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.1597
−0.2300

0.0040
0.1503
0.0415

⎤
⎥⎥⎥⎥⎥⎥⎦

Thus, the reflection response will be:

Γ(z)= B1(z)
A1(z)

= −0.1597− 0.2300z−1 + 0.0040z−2 + 0.1502z−3 + 0.0415z−4

1+ 0.0428z−1 − 0.0339z−2 − 0.0333z−3 − 0.0066z−4

We note that because ρ3 = 0, the polynomials A3(z) and A4(z) are the same and B3(z)
is simply the delayed version of B4(z), that is, B3(z)= z−1B4(z). ��

Example 6.6.4: Determine the reflection polynomials for the cases M = 1, M = 2, and M = 3
with reflection coefficients {ρ1, ρ2}, {ρ1, ρ2, ρ3}, and {ρ1, ρ2, ρ3, ρ4}, respectively.

Solution: For M = 1, we have A2(z)= 1 and B2(z)= ρ2. Then, Eq. (6.6.19) gives:

[
A1(z)
B1(z)

]
=
[

1 ρ1z−1

ρ1 z−1

][
A2(z)
B2(z)

]
=
[

1 ρ1z−1

ρ1 z−1

][
1
ρ2

]
=
[

1+ ρ1ρ2z−1

ρ1 + ρ2z−1

]

For M = 2, we start with A3(z)= 1 and B3(z)= ρ3. The first step of the recursion gives:

[
A2(z)
B2(z)

]
=
[

1 ρ2z−1

ρ2 z−1

][
1
ρ3

]
=
[

1+ ρ2ρ3z−1

ρ2 + ρ3z−1

]

and the second step:

[
A1(z)
B1(z)

]
=
[

1 ρ1z−1

ρ1 z−1

][
1+ ρ2ρ3z−1

ρ2 + ρ3z−1

]
=
[

1+ ρ2(ρ1 + ρ3)z−1 + ρ1ρ3z−2

ρ1 + ρ2(1+ ρ1ρ3)z−1 + ρ3z−2

]

For M = 3, we have A4(z)= 1 and B4(z)= ρ4. The first and second steps give:

[
A3(z)
B3(z)

]
=
[

1 ρ3z−1

ρ3 z−1

][
1
ρ4

]
=
[

1+ ρ3ρ4z−1

ρ3 + ρ4z−1

]

[
A2(z)
B2(z)

]
=
[

1 ρ2z−1

ρ2 z−1

][
1+ ρ3ρ4z−1

ρ3 + ρ4z−1

]
=
[

1+ ρ3(ρ2 + ρ4)z−1 + ρ2ρ4z−2

ρ2 + ρ3(1+ ρ2ρ4)z−1 + ρ4z−2

]
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Then, the final step gives:

[
A1(z)
B1(z)

]
=
[

1 ρ1z−1

ρ1 z−1

][
1+ ρ3(ρ2 + ρ4)z−1 + ρ2ρ4z−2

ρ2 + ρ3(1+ ρ2ρ4)z−1 + ρ4z−2

]

=
[

1+ (ρ1ρ2 + ρ2ρ3 + ρ3ρ4)z−1 + (ρ1ρ3 + ρ2ρ4 + ρ1ρ2ρ3ρ4)z−2 + ρ1ρ4z−3

ρ1 + (ρ2 + ρ1ρ2ρ3 + ρ1ρ3ρ4)z−1 + (ρ3 + ρ1ρ2ρ4 + ρ2ρ3ρ4)z−2 + ρ4z−3

]

As expected, in all cases the first and last coefficients ofAi(z) are 1 and ρiρM+1 and those
of Bi(z) are ρi and ρM+1.

An approximation that is often made in practice is to assume that the ρis are small and
ignore all the terms that involve two or more factors of ρi. In this approximation, we have
for the polynomials and the reflection response Γ(z)= B1(z)/A1(z), for the M = 3 case:

A1(z)= 1
B1(z)= ρ1 + ρ2z−1 + ρ3z−2 + ρ4z−3 ⇒ Γ(z)= ρ1 + ρ2z−1 + ρ3z−2 + ρ4z−3

This is equivalent to ignoring all multiple reflections within each layer and considering only
a single reflection at each interface. Indeed, the term ρ2z−1 represents the wave reflected at
interface-2 and arriving back at interface-1 with a roundtrip delay of z−1. Similarly, ρ3z−2

represents the reflection at interface-3 and has a delay of z−2 because the wave must make
a roundtrip of two layers to come back to interface-1, and ρ4z−3 has three roundtrip delays
because the wave must traverse three layers. ��

The two MATLAB functions frwrec and bkwrec implement the forward and back-
ward recursions (6.6.49) and (6.6.50), respectively. They have usage:

[A,B] = frwrec(r); % forward recursion - from r to A,B
[r,A,B] = bkwrec(a,b); % backward recursion - from a,b to r

The input r of frwrec represents the vector of theM+ 1 reflection coefficients and
A,B are the (M + 1)×(M + 1) matrices whose columns are the polynomials ai and bi
(padded with zeros at the end to make them of lengthM+1.) The inputs a,b of bkwrec
are the final order-M polynomials a,b and the outputs r,A,B have the same meaning
as in frwrec. We note that the first row of B contains the reflection coefficients r.

The auxiliary functions r2n and n2r allow one to pass from the reflection coefficient
vector r to the refractive index vector n, and conversely. They have usage:

n = r2n(r); % reflection coefficients to refractive indices

r = n2r(n); % refractive indices to reflection coefficients

As an illustration, the MATLAB code:

a = [1, -0.1, -0.064, -0.05];
b = [-0.1, -0.188, -0.35, 0.5];
[r,A,B] = bkwrec(a,b);
n = r2n(r);
r = n2r(n);

will generate the output of Example 6.6.1:
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r =
-0.1000 -0.2000 -0.4000 0.5000

A =
1.0000 1.0000 1.0000 1.0000
-0.1000 -0.1200 -0.2000 0
-0.0640 -0.1000 0 0
-0.0500 0 0 0

B =
-0.1000 -0.2000 -0.4000 0.5000
-0.1880 -0.3600 0.5000 0
-0.3500 0.5000 0 0
0.5000 0 0 0

n =
1.0000 1.2222 1.8333 4.2778 1.4259

r =
-0.1000 -0.2000 -0.4000 0.5000

Conversely, if the above r is the input to frwrec, the returned matrices A,B will be
identical to the above. The function r2n solves Eq. (6.1.1) for ni and always assumes that
the refractive index of the leftmost medium is unity. Once the ni are known, the function
multidiel may be used to compute the reflection response at any set of frequencies or
wavelengths.

6.7 Applications of Layered Structures

In addition to their application in dielectric thin-film and radome design, layered struc-
tures and the corresponding forward and backward layer recursions have a number of
applications in other wave propagation problems, such as the design of broadband ter-
minations of transmission lines, the analysis and synthesis of speech, geophysical signal
processing for oil exploration, the probing of tissue by ultrasound, and the design of
acoustic reflectors for noise control.

It is remarkable also that the same forward and backward recursions (6.6.49) and
(6.6.50) are identical (up to reindexing) to the forward and backward Levinson recursions
of linear prediction [816], with the layer structures being mathematically equivalent to
the analysis and synthesis lattice filters. This connection is perhaps the reason behind
the great success of linear prediction methods in speech and geophysical signal pro-
cessing.

Moreover, the forward and backward layer recursions in their reflection forms, Eqs.
(6.6.41) and (6.6.47), and impedance forms, Eqs. (6.6.42) and (6.6.48), are the essential
mathematical tools for Schur’s characterization of lossless bounded real functions in the
z-plane and Richard’s characterization of positive real functions in the s-plane and have
been applied to network synthesis and to the development of transfer function stability
tests, such as the Schur-Cohn test [836–850].

In all wave problems there are always two associated propagating field quantities
playing the roles of the electric and magnetic fields. For forward-moving waves the
ratio of the two field quantities is constant and equal to the characteristic impedance of
the particular propagation medium for the particular type of wave.



6.7. Applications of Layered Structures 223

For example, for transmission lines the two field quantities are the voltage and cur-
rent along the line, for sound waves they are the pressure and particle volume velocity,
and for seismic waves, the stress and particle displacement.

A transmission line connected to a multisegment impedance transformer and a load
is shown in Fig. 6.7.1. The characteristic impedances of the main line and the seg-
ments are Za and Z1, . . . , ZM, and the impedance of the load, Zb. Here, the impedances
{Za,Z1, . . . , ZM,Zb}, play the same role as {ηa,η1, . . . , ηM,ηb} in the dielectric stack
case.

Fig. 6.7.1 Multisegment broadband termination of a transmission line.

The segment characteristic impedances Zi and lengths li can be adjusted to obtain
an overall reflection response that is reflectionless over a wideband of frequencies [805–
815]. This design method is presented in Sec. 6.8.

In speech processing, the vocal tract is modeled as an acoustic tube of varying cross-
sectional area. It can be approximated by the piece-wise constant area approximation
shown in Fig. 6.7.2. Typically, ten segments will suffice.

The acoustic impedance of a sound wave varies inversely with the tube area, Z =
ρc/A, where ρ, c, and A are the air density, speed of sound, and tube area, respectively.
Therefore, as the sound wave propagates from the glottis to the lips, it will suffer reflec-
tions every time it encounters an interface, that is, whenever it enters a tube segment
of different diameter.

Fig. 6.7.2 Multisegment acoustic tube model of vocal tract.

Multiple reflections will be set up within each segment and the tube will reverberate
in a complicated manner depending on the number of segments and their diameters.
By measuring the speech wave that eventually comes out of the lips (the transmission
response,) it is possible to remove, or deconvolve, the reverberatory effects of the tube
and, in the process, extract the tube parameters, such as the areas of the segments, or
equivalently, the reflection coefficients at the interfaces.

During speech, the configuration of the vocal tract changes continuously, but it does
so at mechanical speeds. For short periods of time (typically, of the order of 20–30
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msec,) it may be considered to maintain a fixed configuration. From each such short
segment of speech, a set of configuration parameters, such as reflection coefficients,
is extracted. Conversely, the extracted parameters may be used to re-synthesize the
speech segment.

Such linear prediction based acoustic tube models of speech production are routinely
used in the analysis and synthesis of speech, speech recognition, speaker identification,
and speech coding for efficient data transmission, such as in wireless phones.

The seismic problem in geophysical signal processing is somewhat different. Here,
it is not the transmitted wave that is experimentally available, but rather the overall
reflected wave. Fig. 6.7.3 shows the typical case.

Fig. 6.7.3 Seismic probing of earth’s multilayer structure.

An impulsive input to the earth, such as an explosion near the surface, will set up
seismic elastic waves propagating downwards. As the various earth layers are encoun-
tered, reflections will take place. Eventually, each layer will be reverberating and an over-
all reflected wave will be measured at the surface. With the help of the backward recur-
sions, the parameters of the layered structure (reflection coefficients and impedances)
are extracted and evaluated to determine the presence of a layer that contains an oil
deposit.

The application of the backward recursions has been termed dynamic predictive de-
convolution in the geophysical context [823–835]. An interesting historical account of
the early development of this method by Robinson and its application to oil exploration
and its connection to linear prediction is given in Ref. [829]. The connection to the con-
ventional inverse scattering methods based on the Gelfand-Levitan-Marchenko approach
is discussed in [830–835].

Fiber Bragg gratings (FBG), obtained by periodically modulating the refractive index
of the core (or the cladding) of a finite portion of a fiber, behave very similarly to di-
electric mirrors and exhibit high reflectance bands [771–791]. The periodic modulation
is achieved by exposing that portion of the fiber to intense ultraviolet radiation whose
intensity has the required periodicity. The periodicity shown in Fig. 6.7.4 can have arbi-
trary shape—not only alternating high/low refractive index layers as suggested by the
figure. We discuss FBGs further in Sec. 11.4.
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Fig. 6.7.4 Fiber Bragg gratings acting as bandstop or bandpass filters.

Quarter-wave phase-shifted fiber Bragg gratings act as narrow-band transmission
filters and can be used as demultiplexing filters in WDM and dense WDM (DWDM) com-
munications systems. Assuming as in Fig. 6.7.4 that the inputs to the FBGs consist of
several multiplexed wavelengths, λ1, λ2, λ3, . . . , and that the FBGs are tuned to wave-
length λ2, then the ordinary FBG will act as an almost perfect reflector of λ2. If its
reflecting band is narrow, then the other wavelengths will transmit through. Similarly,
the phase-shifted FBG will act as a narrow-band transmission filter allowing λ2 through
and reflecting the other wavelengths if they lie within its reflecting band.

A typical DWDM system may carry 40 wavelengths at 10 gigabits per second (Gbps)
per wavelength, thus achieving a 400 Gbps bandwidth. In the near future, DWDM sys-
tems will be capable of carrying hundreds of wavelengths at 40 Gbps per wavelength,
achieving terabit per second rates [791].

6.8 Chebyshev Design of Reflectionless Multilayers

In this section, we discuss the design of broadband reflectionless multilayer structures of
the type shown in Fig. 6.6.1 , or equivalently, broadband terminations of transmission
lines as shown in Fig. 6.7.1, using Collin’s method based on Chebyshev polynomials
[805–815,640,659].

As depicted in Fig. 6.8.1, the desired specifications are: (a) the operating center
frequency f0 of the band, (b) the bandwidthΔf , and (c) the desired amount of attenuation
A (in dB) within the desired band, measured with respect to the reflectance value at dc.

Because the optical thickness of the layers is δ = ωTs/2 = (π/2)(f/f0) and van-
ishes at dc, the reflection response at f = 0 should be set equal to its unmatched value,
that is, to the value when there are no layers:

|Γ(0)|2 = ρ2
0 =

(
ηb − ηa
ηa + ηb

)2

=
(
na − nb
na + nb

)2

(6.8.1)

Collin’s design method [805] assumes |Γ(f)|2 has the analytical form:
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Fig. 6.8.1 Reflectance specifications for Chebyshev design.

|Γ(f)|2 = e2
1T

2
M(x)

1+ e2
1T

2
M(x)

x = x0 cosδ = x0 cos
(πf

2f0

)
(6.8.2)

where TM(x)= cos
(
M acos(x)

)
is the Chebyshev polynomial (of the first kind) of order

M. The parameters M,e1, x0 are fixed by imposing the desired specifications shown in
Fig. 6.8.1.

Once these parameters are known, the order-M polynomials A(z),B(z) are deter-
mined by spectral factorization, so that |Γ(f)|2 = |B(f)|2/|A(f)|2. The backward layer
recursions, then, allow the determination of the reflection coefficients at the layer inter-
faces, and the corresponding refractive indices. Setting f = 0, or δ = 0, or cosδ = 1, or
x = x0, we obtain the design equation:

|Γ(0)|2 = e2
1T

2
M(x0)

1+ e2
1T

2
M(x0)

= e2
0

1+ e2
0
= ρ2

0 (6.8.3)

where we defined e0 = e1TM(x0). Solving for e0, we obtain:

e2
0 =

ρ2
0

1− ρ2
0
= (na − nb)2

4nanb
(6.8.4)

Chebyshev polynomialsTM(x) are reviewed in more detail in Sec. 20.9 that discusses
antenna array design using the Dolph-Chebyshev window. The two key properties of
these polynomials are that they have equiripple behavior within the interval −1 ≤ x ≤ 1
and grow like xM for |x| > 1; see for example, Fig. 20.9.1.

By adjusting the value of the scale parameter x0, we can arrange the entire equiripple
domain, −1 ≤ x ≤ 1, of TM(x) to be mapped onto the desired reflectionless band
[f1, f2], where f1, f2 are the left and right bandedge frequencies about f0, as shown in
Fig. 6.8.1. Thus, we demand the conditions:

x0 cos
(πf2

2f0

) = −1, x0 cos
(πf1

2f0

) = 1

These can be solved to give:
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πf2
2f0

= acos
(− 1

x0

) = π
2
+ asin

( 1

x0

)
πf1
2f0

= acos
( 1

x0

) = π
2
− asin

( 1

x0

) (6.8.5)

Subtracting, we obtain the bandwidth Δf = f2 − f1:

π
2

Δf
f0
= 2 asin

(
1

x0

)
(6.8.6)

We can now solve for the scale parameter x0 in terms of the bandwidth:

x0 = 1

sin
(
π
4

Δf
f0

) (6.8.7)

It is evident from Fig. 6.8.1 that the maximum value of the bandwidth that one can
demand is Δfmax = 2f0. Going back to Eq. (6.8.5) and using (6.8.6), we see that f1 and
f2 lie symmetrically about f0, such that f1 = f0 −Δf/2 and f2 = f0 +Δf/2.

Next, we impose the attenuation condition. Because of the equiripple behavior over
the Δf band, it is enough to impose the condition at the edges of the band, that is, we
demand that when f = f1, or x = 1, the reflectance is down by A dB as compared to its
value at dc:

|Γ(f1)|2 = |Γ(0)|2 10−A/10 ⇒ e2
1T

2
M(1)

1+ e2
1T

2
M(1)

= e2
0

1+ e2
0

10−A/10

But, TM(1)= 1. Therefore, we obtain an equation for e2
1:

e2
1

1+ e2
1
= e2

0

1+ e2
0

10−A/10 (6.8.8)

Noting that e0 = e1TM(x0), we solve Eq. (6.8.8) for the ratio TM(x0)= e0/e1:

TM(x0)= cosh
(
M acosh(x0)

) = √(1+ e2
0)10A/10 − e2

0 (6.8.9)

Alternatively, we can express A in terms of TM(x0):

A = 10 log10

(
T2
M(x0)+e2

0

1+ e2
0

)
(6.8.10)

where we used the definition TM(x0)= cosh
(
M acosh(x0)

)
because x0 > 1. Solving

(6.8.9) for M in terms of A, we obtain:

M = ceil(Mexact) (6.8.11)

where

Mexact =
acosh

(√
(1+ e2

0)10A/10 − e2
0

)
acosh(x0)

(6.8.12)
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Because Mexact is rounded up to the next integer, the attenuation will be somewhat
larger than required. In summary, we calculate e0, x0,M from Eqs. (6.8.4), (6.8.7), and
(6.8.11). Finally, e1 is calculated from:

e1 = e0

TM(x0)
= e0

cosh
(
M acosh(x0)

) (6.8.13)

Next, we construct the polynomialsA(z) and B(z). It follows from Eqs. (6.6.25) and
(6.6.34) that the reflectance and transmittance are:

|Γ(f)|2 = |B(f)|2
|A(f)|2 , |T(f)|2 = 1− |Γ(f)|2 = σ2

|A(f)|2 ,

Comparing these with Eq. (6.8.2), we obtain:

|A(f)|2 = σ2[1+ e2
1T

2
M(x0 cosδ)

]
|B(f)|2 = σ2e2

1T
2
M(x0 cosδ)

(6.8.14)

The polynomial A(z) is found by requiring that it be a minimum-phase polynomial,
that is, with all its zeros inside the unit circle on the z-plane. To find this polynomial,
we determine the 2M roots of the right-hand-side of |A(f)|2 and keep only those M
that lie inside the unit circle. We start with the equation for the roots:

σ2[1+ e2
1T

2
M(x0 cosδ)

] = 0 ⇒ TM(x0 cosδ)= ± j
e1

Because TM(x0 cosδ)= cos
(
M acos(x0 cosδ)

)
, the desired M roots are given by:

x0 cosδm = cos
(acos

(− j
e1

)+mπ
M

)
, m = 0,1, . . . ,M − 1 (6.8.15)

Indeed, these satisfy:

cos
(
M acos(x0 cosδm)

) = cos
(

acos
(− j
e1

)+mπ) = − j
e1

cosmπ = ± j
e1

Solving Eq. (6.8.15) for δm, we find:

δm = acos
[

1

x0
cos

(acos
(− j
e1

)+mπ
M

)]
, m = 0,1, . . . ,M − 1 (6.8.16)

Then, the M zeros of A(z) are constructed by:

zm = e2jδm , m = 0,1, . . . ,M − 1 (6.8.17)

These zeros lie inside the unit circle, |zm| < 1. (Replacing −j/e1 by +j/e1 in
Eq. (6.8.16) would generate M zeros that lie outside the unit circle; these are the ze-
ros of Ā(z).) Finally, the polynomial A(z) is obtained by multiplying the root factors:

A(z)=
M−1∏
m=0

(1− zmz−1)= 1+ a1z−1 + a2z−2 + · · · + aMz−M (6.8.18)
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Once A(z) is obtained, we may fix the scale factor σ2 by requiring that the two
sides of Eq. (6.8.14) match at f = 0. Noting that A(f) at f = 0 is equal to the sum of the
coefficients of A(z) and that e1TM(x0)= e0, we obtain the condition:

∣∣∣∣∣∣
M−1∑
m=0

am

∣∣∣∣∣∣
2

= σ2(1+ e2
0) ⇒ σ = ±

∣∣∣∣∣∣
M−1∑
m=0

am

∣∣∣∣∣∣√
1+ e2

0

(6.8.19)

Either sign ofσ leads to a solution, but its physical realizability (i.e., n1 ≥ 1) requires
that we choose the negative sign if na < nb, and the positive one if na > nb. (The
opposite choice of signs leads to the solution n′i = n2

a/ni, i = a,1, . . . ,M, b.)
The polynomial B(z) can now be constructed by taking the square root of the second

equation in (6.8.14). Again, the simplest procedure is to determine the roots of the right-
hand side and multiply the root factors. The root equations are:

σ2e2
1T

2
M(x0 cosδ)= 0 ⇒ TM(x0 cosδ)= 0

with M roots:

δm = acos
(

1

x0
cos

((m+ 0.5)π
M

))
, m = 0,1, . . . ,M − 1 (6.8.20)

The z-plane roots are zm = e2jδm , m = 0,1, . . . ,M− 1. The polynomial B(z) is now
constructed up to a constant b0 by the product:

B(z)= b0

M−1∏
m=0

(1− zmz−1) (6.8.21)

As before, the factor b0 is fixed by matching Eq. (6.8.14) at f = 0. Because δm is
real, the zeros zm will all have unit magnitude and B(z) will be equal to its reverse
polynomial, BR(z)= B(z).

Finally, the reflection coefficients at the interfaces and the refractive indices are
obtained by sending A(z) and B(z) into the backward layer recursion.

The above design steps are implemented by the MATLAB functions chebtr, chebtr2,
and chebtr3 with usage:

[n,a,b] = chebtr(na,nb,A,DF); % Chebyshev multilayer design

[n,a,b,A] = chebtr2(na,nb,M,DF); % specify order and bandwidth

[n,a,b,DF] = chebtr3(na,nb,M,A); % specify order and attenuation

The inputs are the refractive indices na,nb of the left and right media, the desired at-
tenuation in dB, and the fractional bandwidth ΔF = Δf/f0. The output is the refractive
index vector n = [na, n1, n2, . . . , nM,nb] and the reflection and transmission polynomi-
als b and a. In chebtr2 and chebtr3, the order M is given. To clarify the design steps,
we give below the essential source code for chebtr:

e0 = sqrt((nb-na)^2/(4*nb*na));
x0 = 1/sin(DF*pi/4);
M = ceil(acosh(sqrt((e0^2+1)*10^(A/10) - e0^2))/acosh(x0));
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e1 = e0/cosh(M*acosh(x0));

m=0:M-1;
delta = acos(cos((acos(-j/e1)+pi*m)/M)/x0);
z = exp(2*j*delta); % zeros of A(z)

a = real(poly(z)); % coefficients of A(z)

sigma = sign(na-nb)*abs(sum(a))/sqrt(1+e0^2); % scale factor σ

delta = acos(cos((m+0.5)*pi/M)/x0);
z = exp(2*j*delta); % zeros of B(z)

b = real(poly(z)); % unscaled coefficients of B(z)
b0 = sigma * e0 / abs(sum(b));
b = b0 * b; % rescaled B(z)

r = bkwrec(a,b); % backward recursion

n = na * r2n(r); % refractive indices

Example 6.8.1: Broadband antireflection coating. Design a broadband antireflection coating on
glass with na = 1, nb = 1.5, A = 20 dB, and fractional bandwidth ΔF = Δf/f0 = 1.5.
Then, design a coating with deeper and narrower bandwidth having parameters A = 30
dB and ΔF = Δf/f0 = 1.0.

Solution: The reflectances of the designed coatings are shown in Fig. 6.8.2. The two cases have
M = 8 and M = 5, respectively, and refractive indices:

n = [1,1.0309,1.0682,1.1213,1.1879,1.2627,1.3378,1.4042,1.4550,1.5]

n = [1,1.0284,1.1029,1.2247,1.3600,1.4585,1.5]

The specifications are better than satisfied because the method rounds up the exact value
of M to the next integer. These exact values were Mexact = 7.474 and Mexact = 4.728, and
were increased to M = 8 and M = 5.
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Fig. 6.8.2 Chebyshev designs. Reflectances are normalized to 0 dB at dc.

The desired bandedges shown on the graphs were computed from f1/f0 = 1−ΔF/2 and
f1/f0 = 1+ΔF/2. The designed polynomial coefficients a,b were in the two cases:
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a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000
0.0046
0.0041
0.0034
0.0025
0.0017
0.0011
0.0005
0.0002

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0152
−0.0178
−0.0244
−0.0290
−0.0307
−0.0290
−0.0244
−0.0178
−0.0152

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000
0.0074
0.0051
0.0027
0.0010
0.0002

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0140
−0.0350
−0.0526
−0.0526
−0.0350
−0.0140

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The zeros of the polynomials a were in the two cases:

z =

⎡
⎢⎢⎢⎣

0.3978∠± 27.93o

0.3517∠± 73.75o

0.3266∠± 158.76o

0.3331∠± 116.34o

⎤
⎥⎥⎥⎦ and z =

⎡
⎢⎣

0.2112∠± 45.15o

0.1564∠180o

0.1678∠± 116.30o

⎤
⎥⎦

They lie inside the unit circle by design. The typical MATLAB code used to generate these
examples was:

na = 1; nb = 1.5; A = 20; DF = 1.5;

n = chebtr(na,nb,A,DF);
M = length(n) - 2;

f = linspace(0,4,1601);
L = 0.25 * ones(1,M);

G0 = (na-nb)^2 / (na+nb)^2;
G = abs(multidiel(n,L,1./f)).^2;

plot(f, 10*log10(G/G0));

The reflectances were computed with the function multidiel. The optical thickness inputs
to multidiel were all quarter-wavelength at f0. ��

We note, in this example, that the coefficients of the polynomial B(z) are symmetric
about their middle, that is, the polynomial is self-reversing BR(z)= B(z). One conse-
quence of this property is that the vector of reflection coefficients is also symmetric
about its middle, that is,

[ρ1, ρ2, . . . , ρM, ρM+1]= [ρM+1, ρM, . . . , ρ2, ρ1] (6.8.22)

or, ρi = ρM+2−i, for i = 1,2, . . . ,M+1. These conditions are equivalent to the following
constraints among the resulting refractive indices:

ninM+2−i = nanb � ρi = ρM+2−i , i = 1,2, . . . ,M + 1 (6.8.23)

These can be verified easily in the above example. The proof of these conditions
follows from the symmetry of B(z). A simple argument is to use the single-reflection
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approximation discussed in Example 6.6.4, in which the polynomialB(z) is to first-order
in the ρis:

B(z)= ρ1 + ρ2z−1 + · · · + ρM+1z−M

If the symmetry property ρi = ρM+2−i were not true, then B(z) could not satisfy the
propertyBR(z)= B(z). A more exact argument that does not rely on this approximation
can be given by considering the product of matrices (6.6.17).

In the design steps outlined above, we used MATLAB’s built-in function poly.m to
construct the numerator and denominator polynomials B(z),A(z) from their zeros.
These zeros are almost equally-spaced around the unit circle and get closer to each
other with increasing order M. This causes poly to lose accuracy around order 50–60.

In the three chebtr functions (as well as in the Dolph-Chebyshev array functions of
Chap. 20), we have used an improved version, poly2.m, with the same usage as poly,
that maintains its accuracy up to order of about 3000.

Fig. 6.8.3 shows a typical pattern of zeros for Example 6.8.1 for normalized band-
widths ofΔF = 1.85 andΔF = 1.95 and attenuation ofA = 30 dB. The zeros of B(z) lie
on the unit circle, and those of A(z), inside the circle. The function poly2 groups the
zeros in subgroups such that the zeros within each subgroup are not as closely spaced.
For example, for the left graph of Fig. 6.8.3, poly2 picks the zeros sequentially, whereas
for the right graph, it picks every other zero, thus forming two subgroups, then poly
is called on each subgroup, and the two resulting polynomials are convolved to get the
overall polynomial.

 Δ F = 1.85,  M = 36  Δ F = 1.95,  M = 107

Fig. 6.8.3 Zero patterns of B(z) (open circles) and A(z) (filled circles), for A = 30 dB.

Finally, we discuss the design of broadband terminations of transmission lines shown
in Fig. 6.7.1. Because the media admittances are proportional to the refractive indices,
η−1
i = niη−1

vac, we need only replace ni by the line characteristic admittances:

[na, n1, . . . , nM,nb]→ [Ya,Y1, . . . , YM,Yb]

where Ya,Yb are the admittances of the main line and the load and Yi, the admittances
of the segments. Thus, the vector of admittances can be obtained by the MATLAB call:

Y = chebtr(Ya, Yb, A, DF); % Chebyshev transmission line impedance transformer
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We also have the property (6.8.23), YiYM+2−i = YaYb, or, ZiZM+2−i = ZaZb, for
i = 1,2, . . . ,M + 1, where Yi = 1/Zi. One can work directly with impedances—the
following call would generate exactly the same solution, whereZ = [Za,Z1, . . . , ZM,Zb]:

Z = chebtr(Za, Zb, A, DF); % Chebyshev transmission line impedance transformer

In this design method, one does not have any control over the resulting refractive
indicesni or admittancesYi. This can be problematic in the design of antireflection coat-
ings because there do not necessarily exist materials with the designed nis. However,
one can replace or “simulate” any value of the refractive index of a layer by replac-
ing the layer with an equivalent set of three layers of available indices and appropriate
thicknesses [615–675].

This is not an issue in the case of transmission lines, especially microstrip lines,
because one can design a line segment of a desired impedance by adjusting the geometry
of the line, for example, by changing the diameters of a coaxial cable, the spacing of a
parallel-wire, or the width of a microstrip line.

6.9 Problems

6.1 A uniform plane wave of frequency of 1.25 GHz is normally incident from free space onto a
fiberglass dielectric slab (ε = 4ε0, μ = μ0) of thickness of 3 cm, as shown on the left figure
below.

a. What is the free-space wavelength of this wave in cm? What is its wavelength inside
the fiberglass?

b. What percentage of the incident power is reflected backwards?

c. Next, an identical slab is inserted to the right of the first slab at a distance of 6 cm, as
shown on the right. What percentage of incident power is now reflected back?

6.2 Three identical dielectric slabs of thickness of 1 cm and dielectric constant ε = 4ε0 are
positioned as shown below. A uniform plane wave of frequency of 3.75 GHz is incident
normally onto the leftmost slab.

a. Determine the power reflection and transmission coefficients, |Γ|2 and |T|2, as per-
centages of the incident power.
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b. Determine |Γ|2 and |T|2 if the three slabs and air gaps are replaced by a single slab of
thickness of 7 cm.

6.3 Three identical fiberglass slabs of thickness of 3 cm and dielectric constant ε = 4ε0 are
positioned at separations d1 = d2 = 6 cm, as shown below. A wave of free-space wavelength
of 24 cm is incident normally onto the left slab.

a. Determine the percentage of reflected power.

b. Repeat if the slabs are repositioned such that d1 = 12 cm and d2 = 6 cm.

6.4 Four identical dielectric slabs of thickness of 1 cm and dielectric constant ε = 4ε0 are posi-
tioned as shown below. A uniform plane wave of frequency of 3.75 GHz is incident normally
onto the leftmost slab.

a. Determine the reflectance |Γ|2 as a percentage.

b. Determine |Γ|2 if slabs A and C are removed and replaced by air.

c. Determine |Γ|2 if the air gap B between slabsA and C is filled with the same dielectric,
so that ABC is a single slab.

6.5 A 2.5 GHz wave is normally incident from air onto a dielectric slab of thickness of 2 cm and
refractive index of 1.5, as shown below. The medium to the right of the slab has index 2.25.

a. Derive an analytical expression of the reflectance |Γ(f)|2 as a function of frequency
and sketch it versus f over the interval 0 ≤ f ≤ 10 GHz. What is the value of the
reflectance at 2.5 GHz?

b. Next, the 2-cm slab is moved to the left by a distance of 6 cm, creating an air-gap
between it and the rightmost dielectric. What is the value of the reflectance at 2.5
GHz?
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6.6 Show that the antireflection coating design equations (6.2.2) can be written in the alternative
forms:

cos2 k2l2 = (n2
2 − nanb)(n2

2na − n2
1nb)

na(n2
2 − n2

b)(n
2
2 − n2

1)
, sin2 k2l2 = n2

2(nb − na)(n2
1 − nanb)

na(n2
2 − n2

b)(n
2
2 − n2

1)

Making the assumptions that n2 > n1 > na, n2 > nb, and nb > na, show that for the design
to have a solution, the following conditions must be satisfied:

n1 >
√
nanb and n2 > n1

√
nb
na

6.7 Show that the characteristic polynomial of any 2×2 matrix F is expressible in terms of the
trace and the determinant of F as in Eq. (6.3.10), that is,

det(F − λI)= λ2 − (trF)λ+ detF

Moreover, for a unimodular matrix show that the two eigenvalues are λ± = e±α where
α = acosh(a) and a = trF/2.

6.8 Show that the bandedge conditiona = −1 for a dielectric mirror is equivalent to the condition
of Eq. (6.3.16). Moreover, show that an alternative condition is:

cosδH cosδL − 1

2

(
nH
nL

+ nL
nH

)
sinδH sinδL = −1

6.9 Stating with the approximate bandedge frequencies given in Eq. (6.3.19), show that the band-
width and center frequency of a dielectric mirror are given by:

Δf = f2 − f1 = 2f0 asin(ρ)
π(LH + LL)

, fc = f1 + f2
2

= f0
2(LH + LL)

where LH = nHlH/λ0, LL = nLlL/λ0, and λ0 is a normalization wavelength, and f0 the
corresponding frequency f0 = c0/λ0.

6.10 Computer Experiment—Antireflection Coatings. Compute and plot over the 400–700 nm
visible band the reflectance of the following antireflection coatings on glass, defined by the
refractive indices and normalized optical thicknesses:

a. n = [1,1.38,1.5], L = [0.25]
b. n = [1,1.38,1.63,1.5], L = [0.25,0.50]
c. n = [1,1.38,2.2,1.63,1.5], L = [0.25,0.50,0.25]
d. n = [1,1.38,2.08,1.38,2.08,1.5], L = [0.25,0.527,0.0828,0.0563]

The normalization wavelength is λ0 = 550 nm. Evaluate and compare the coatings in terms
of bandwidth. Cases (a-c) are discussed in Sec. 6.2 and case (d) is from [622].

6.11 Computer Experiment—Dielectric Sunglasses. A thin-film multilayer design of dielectric sun-
glasses was carried out in Ref. [1352] using 29 layers of alternating TiO2 (nH = 2.35) and
SiO2 (nL = 1.45) coating materials. The design may be found on the web page:
www.sspectra.com/designs/sunglasses.html.

The design specifications for the thin-film structure were that the transmittance be: (a) less
than one percent for wavelengths 400–500 nm, (b) between 15–25 percent for 510–790 nm,
and (c) less than one percent for 800–900 nm.

Starting with the high-index layer closest to the air side and ending with the high-index layer
closest to the glass substrate, the designed lengths of the 29 layers were in nm (read across):
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21.12 32.41 73.89 123.90 110.55 129.47
63.17 189.07 68.53 113.66 62.56 59.58
27.17 90.29 44.78 73.58 50.14 94.82
60.40 172.27 57.75 69.00 28.13 93.12

106.07 111.15 32.68 32.82 69.95

Form the optical lengths nili and normalize them Li = nili/λ0, such that the maximum
optical length is a quarter wavelength at λ0. What is the value of λ0 in nm? Assuming the
glass substrate has index n = 1.5, compute and plot the reflectance and transmittance over
the band 400–900 nm.

6.12 Computer Experiment—Dielectric Mirror. Reproduce all the results and graphs of Example
6.3.2. In addition, carry out the computations for the cases of N = 16,32 bilayers.

In all cases, calculate the minimum and maximum reflectance within the high-reflectance
band. For one value ofN, calculate the reflectance using the closed-form expression (6.3.33)
and verify that it is the same as that produced by multidiel.

6.13 Computer Experiment—Dielectric Mirror. Reproduce all the results and graphs of Example
6.3.3. Repeat the computations and plots when the number of bilayers is N = 8,16. Repeat
for N = 4,8,16 assuming the layers are quarter-wavelength layers at 12.5 μm. In all cases,
calculate the minimum and maximum reflectance within the high-reflectance band.

6.14 Computer Experiment—Shortpass and Longpass Filters. Reproduce all the results and graphs
of Example 6.3.5. Redo the experiments by shifting the short-pass wavelength to λ0 = 750
nm in the first case, and the long-pass wavelength to λ0 = 350 nm in the second case. Plot
the reflectances over the extended band of 200–1000 nm.

6.15 Computer Experiment—Wide Infrared Bandpass Filter. A 47-layer infrared bandpass filter
with wide transmittance bandwidth was designed in Ref. [1352]. The design may be found
on the web page www.sspectra.com/designs/irbp.html.

The alternating low- and high-index layers were ZnS and Ge with indices 2.2 and 4.2. The
substrate was Ge with index 4. The design specifications were that the transmittance be: (a)
less than 0.1% for wavelengths 2–3 μm, (b) greater than 99% for 3.3–5 μm, and (c) less than
0.1% for 5.5–7 μm.

Starting with a low-index layer near the air side and ending with a low-index layer at the
substrate, the layer lengths were in nm (read across):

528.64 178.96 250.12 123.17 294.15 156.86 265.60 134.34
266.04 147.63 289.60 133.04 256.22 165.16 307.19 125.25
254.28 150.14 168.55 68.54 232.65 125.48 238.01 138.25
268.21 98.28 133.58 125.31 224.72 40.79 564.95 398.52
710.47 360.01 724.86 353.08 718.52 358.23 709.26 370.42
705.03 382.28 720.06 412.85 761.47 48.60 97.33

Form the optical lengths nili and normalize them Li = nili/λ0, such that the maximum
optical length is a quarter wavelength at λ0. What is the value of λ0 in μm? Compute and
plot the reflectance and transmittance over the band 2–7 μm.

6.16 The figure below shows three multilayer structures. The first, denoted by (LH)3, consists of
three identical bilayers, each bilayer consisting of a low-index and a high-index quarter-wave
layer, with indices nL = 1.38 and nH = 3.45. The second multilayer, denoted by (HL)3, is
the same as the first one, but with the order of the layers reversed. The third one, denoted
by (LH)3(LL)(HL)3 consists of the first two side-by-side and separated by two low-index
quarter-wave layers LL.
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In all three cases, determine the overall reflection response Γ, as well as the percentage of
reflected power, at the design frequency at which the individual layers are quarter-wave.

6.17 A radome protecting a microwave transmitter consists of a three-slab structure as shown
below. The medium to the left and right of the structure is air. At the carrier frequency of
the transmitter, the structure is required to be reflectionless, that is, Γ = 0.

a. Assuming that all three slabs are quarter-wavelength at the design frequency, what
should be the relationship among the three refractive indices n1, n2, n3 in order to
achieve a reflectionless structure?

b. What should be the relationship among the refractive indices n1, n2, n3 if the middle
slab (i.e., n2) is half-wavelength but the other two are still quarter-wavelength slabs?

c. For case (a), suppose that the medium to the right has a slightly different refractive
index from that of air, say, nb = 1+ε. Calculate the small resulting reflection response
Γ to first order in ε.

6.18 In order to obtain a reflectionless interface between media na and nb, two dielectric slabs
of equal optical lengths L and refractive indices nb, na are positioned as shown below. (The
same technique can be used to connect two transmission lines of impedances Za and Zb.)

A plane wave of frequency f is incident normally from medium na. Let f0 be the frequency at
which the structure must be reflectionless. Let L be the common optical length normalized
to the free-space wavelength λ0 = c0/f0, that is, L = nala/λ0 = nblb/λ0.

a. Show that the reflection response into medium na is given by:

Γ = ρ1− (1+ ρ2)e−2jδ + e−4jδ

1− 2ρ2e−2jδ + ρ2e−4jδ , ρ = na − nb
na + nb

, δ = 2πL
f
f0

b. Show that the interface will be reflectionless at frequency f0 provided the optical
lengths are chosen according to:
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L = 1

4π
arccos

(
1+ ρ2

2

)

This is known as a twelfth-wave transformer because for ρ = 0, it gives L = 1/12.

6.19 A lossless dielectric slab of refractive index n1 and thickness l1 is positioned at a distance
l2 from a semi-infinite dielectric of refractive index n2, as shown below.

A uniform plane wave of free-space wavelength λ0 is incident normally on the slab from the
left. Assuming that the slab n1 is a quarter-wavelength slab, determine the length l2 (in units
of λ0) and the relationship between n1 and n2 in order that there be no reflected wave into
the leftmost medium (i.e., Γ1 = 0).

6.20 In order to provide structural strength and thermal insulation, a radome is constructed using
two identical dielectric slabs of length d and refractive index n, separated by an air-gap of
length d2, as shown below.

Recall that a reflectionless single-layer radome requires that the dielectric layer have half-
wavelength thickness.

However, show that for the above dual-slab arrangement, either half- or quarter-wavelength
dielectric slabs may be used, provided that the middle air-gap is chosen to be a half-wavelength
layer, i.e., d2 = λ0/2, at the operating wavelength λ0. [Hint: Work with wave impedances at
the operating wavelength.]

6.21 Computer Experiment—Dielectric Mirror Bands. Consider the trace function given by Eq. (6.3.13)
of the text, that is,

a = cos(δH + δL)−ρ2 cos(δH − δL)
1− ρ2

The purpose of this problem is to study a as a function of frequency, which enters through:

δi = 2π
(
f
f0

)
Li , Li = nili

λ0
, i = H,L

and to identify the frequency bands where a switches from |a| ≤ 1 to |a| ≥ 1, that is, when
the dielectric mirror structure switches from transmitting to reflecting.

a. For the parameters given in Example 6.3.2 of the text, make a plot of a versus f over
the range 0 ≤ f ≤ 4f0, using f/f0 as your x-axis. Place on the graph the left and right
bandedge frequencies f1, f2 of the reflecting bands centered at f0 and odd multiples
thereof.
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b. Repeat for the parameters na = 1, nH = 4.6, nL = 1.6, LH = 0.3, LL = 0.2. These
parameters are close to those of Example 6.3.2. You may use the function omniband

to calculate the left and right bandedge frequencies around f0.

In plotting a versus f/f0, you will notice that a can become greater than +1 near
f = 2f0. Determine the left and right bandedge frequencies around 2f0 and check to
see whether they define another reflecting band around 2f0.


