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Maxwell’s Equations

1.1 Maxwell’s Equations

Maxwell’s equations describe all (classical) electromagnetic phenomena:

∇∇∇× E = −∂B

∂t

∇∇∇×H = J+ ∂D

∂t

∇∇∇ ·D = ρ
∇∇∇ · B = 0

(Maxwell’s equations) (1.1.1)

The first is Faraday’s law of induction, the second is Ampère’s law as amended by
Maxwell to include the displacement current ∂D/∂t, the third and fourth are Gauss’ laws
for the electric and magnetic fields.

The displacement current term ∂D/∂t in Ampère’s law is essential in predicting the
existence of propagating electromagnetic waves. Its role in establishing charge conser-
vation is discussed in Sec. 1.7.

Eqs. (1.1.1) are in SI units. The quantities E and H are the electric and magnetic
field intensities and are measured in units of [volt/m] and [ampere/m], respectively.
The quantities D and B are the electric and magnetic flux densities and are in units of
[coulomb/m2] and [weber/m2], or [tesla]. D is also called the electric displacement, and
B, the magnetic induction.

The quantities ρ and J are the volume charge density and electric current density
(charge flux) of any external charges (that is, not including any induced polarization
charges and currents.) They are measured in units of [coulomb/m3] and [ampere/m2].
The right-hand side of the fourth equation is zero because there are no magnetic mono-
pole charges. Eqs. (1.3.17)–(1.3.19) display the induced polarization terms explicitly.

The charge and current densities ρ, J may be thought of as the sources of the electro-
magnetic fields. For wave propagation problems, these densities are localized in space;
for example, they are restricted to flow on an antenna. The generated electric and mag-
netic fields are radiated away from these sources and can propagate to large distances to
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the receiving antennas. Away from the sources, that is, in source-free regions of space,
Maxwell’s equations take the simpler form:

∇∇∇× E = −∂B

∂t

∇∇∇×H = ∂D

∂t

∇∇∇ ·D = 0

∇∇∇ · B = 0

(source-free Maxwell’s equations) (1.1.2)

The qualitative mechanism by which Maxwell’s equations give rise to propagating
electromagnetic fields is shown in the figure below.

For example, a time-varying current J on a linear antenna generates a circulating
and time-varying magnetic field H, which through Faraday’s law generates a circulating
electric field E, which through Ampère’s law generates a magnetic field, and so on. The
cross-linked electric and magnetic fields propagate away from the current source. A
more precise discussion of the fields radiated by a localized current distribution is given
in Chap. 14.

1.2 Lorentz Force

The force on a charge q moving with velocity v in the presence of an electric and mag-
netic field E,B is called the Lorentz force and is given by:

F = q(E+ v× B) (Lorentz force) (1.2.1)

Newton’s equation of motion is (for non-relativistic speeds):

m
dv

dt
= F = q(E+ v× B) (1.2.2)

where m is the mass of the charge. The force F will increase the kinetic energy of the
charge at a rate that is equal to the rate of work done by the Lorentz force on the charge,
that is, v · F. Indeed, the time-derivative of the kinetic energy is:

Wkin = 1

2
m v · v ⇒ dWkin

dt
=m v · dv

dt
= v · F = q v · E (1.2.3)

We note that only the electric force contributes to the increase of the kinetic energy—
the magnetic force remains perpendicular to v, that is, v · (v× B)= 0.
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Volume charge and current distributions ρ, J are also subjected to forces in the
presence of fields. The Lorentz force per unit volume acting on ρ, J is given by:

f = ρE+ J× B (Lorentz force per unit volume) (1.2.4)

where f is measured in units of [newton/m3]. If J arises from the motion of charges
within the distribution ρ, then J = ρv (as explained in Sec. 1.6.) In this case,

f = ρ(E+ v× B) (1.2.5)

By analogy with Eq. (1.2.3), the quantity v · f = ρ v · E = J · E represents the power
per unit volume of the forces acting on the moving charges, that is, the power expended
by (or lost from) the fields and converted into kinetic energy of the charges, or heat. It
has units of [watts/m3]. We will denote it by:

dPloss

dV
= J · E (ohmic power losses per unit volume) (1.2.6)

In Sec. 1.8, we discuss its role in the conservation of energy. We will find that elec-
tromagnetic energy flowing into a region will partially increase the stored energy in that
region and partially dissipate into heat according to Eq. (1.2.6).

1.3 Constitutive Relations

The electric and magnetic flux densities D,B are related to the field intensities E,H via
the so-called constitutive relations, whose precise form depends on the material in which
the fields exist. In vacuum, they take their simplest form:

D = ε0E

B = μ0H
(1.3.1)

where ε0, μ0 are the permittivity and permeability of vacuum, with numerical values:

ε0 = 8.854× 10−12 farad/m

μ0 = 4π× 10−7 henry/m
(1.3.2)

The units for ε0 and μ0 are the units of the ratios D/E and B/H, that is,

coulomb/m2

volt/m
= coulomb

volt ·m
= farad

m
,

weber/m2

ampere/m
= weber

ampere ·m
= henry

m

From the two quantities ε0, μ0, we can define two other physical constants, namely,
the speed of light and the characteristic impedance of vacuum:

c0 = 1√μ0ε0
= 3× 108 m/sec , η0 =

√
μ0

ε0
= 377 ohm (1.3.3)
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The next simplest form of the constitutive relations is for simple homogeneous
isotropic dielectric and for magnetic materials:

D = εE
B = μH

(1.3.4)

These are typically valid at low frequencies. The permittivity ε and permeability μ
are related to the electric and magnetic susceptibilities of the material as follows:

ε = ε0(1+ χ)
μ = μ0(1+ χm)

(1.3.5)

The susceptibilities χ,χm are measures of the electric and magnetic polarization
properties of the material. For example, we have for the electric flux density:

D = εE = ε0(1+ χ)E = ε0E+ ε0χE = ε0E+ P (1.3.6)

where the quantity P = ε0χE represents the dielectric polarization of the material, that
is, the average electric dipole moment per unit volume. In a magnetic material, we have

B = μ0(H+M)= μ0(H+ χmH)= μ0(1+ χm)H = μH (1.3.7)

where M = χmH is the magnetization, that is, the average magnetic moment per unit
volume. The speed of light in the material and the characteristic impedance are:

c = 1√με , η =
√
μ
ε

(1.3.8)

The relative permittivity, permeability and refractive index of a material are defined by:

εrel = ε
ε0
= 1+ χ , μrel = μ

μ0
= 1+ χm , n = √εrelμrel (1.3.9)

so that n2 = εrelμrel. Using the definition of Eq. (1.3.8), we may relate the speed of light
and impedance of the material to the corresponding vacuum values:

c = 1√με =
1√μ0ε0εrelμrel

= c0√εrelμrel
= c0

n

η =
√
μ
ε
=
√
μ0

ε0

√
μrel

εrel
= η0

√
μrel

εrel
= η0

μrel

n
= η0

n
εrel

(1.3.10)

For a non-magnetic material, we have μ = μ0, or, μrel = 1, and the impedance
becomes simply η = η0/n, a relationship that we will use extensively in this book.

More generally, constitutive relations may be inhomogeneous, anisotropic, nonlin-
ear, frequency dependent (dispersive), or all of the above. In inhomogeneous materials,
the permittivity ε depends on the location within the material:

D(r, t)= ε(r)E(r, t)
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In anisotropic materials, ε depends on the x, y, z direction and the constitutive rela-
tions may be written component-wise in matrix (or tensor) form:

⎡
⎢⎣
Dx
Dy
Dz

⎤
⎥⎦ =

⎡
⎢⎣
εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

⎤
⎥⎦
⎡
⎢⎣
Ex
Ey
Ez

⎤
⎥⎦ (1.3.11)

Anisotropy is an inherent property of the atomic/molecular structure of the dielec-
tric. It may also be caused by the application of external fields. For example, conductors
and plasmas in the presence of a constant magnetic field—such as the ionosphere in the
presence of the Earth’s magnetic field—become anisotropic (see for example, Problem
1.10 on the Hall effect.)

In nonlinear materials, εmay depend on the magnitude E of the applied electric field
in the form:

D = ε(E)E , where ε(E)= ε+ ε2E + ε3E2 + · · · (1.3.12)

Nonlinear effects are desirable in some applications, such as various types of electro-
optic effects used in light phase modulators and phase retarders for altering polariza-
tion. In other applications, however, they are undesirable. For example, in optical fibers
nonlinear effects become important if the transmitted power is increased beyond a few
milliwatts. A typical consequence of nonlinearity is to cause the generation of higher
harmonics, for example, if E = E0ejωt, then Eq. (1.3.12) gives:

D = ε(E)E = εE + ε2E2 + ε3E3 + · · · = εE0ejωt + ε2E2
0e2jωt + ε3E3

0e3jωt + · · ·

Thus the input frequency ω is replaced by ω,2ω,3ω, and so on. In a multi-
wavelength transmission system, such as a wavelength division multiplexed (WDM) op-
tical fiber system carrying signals at closely-spaced carrier frequencies, such nonlinear-
ities will cause the appearance of new frequencies which may be viewed as crosstalk
among the original channels. For example, if the system carries frequencies ωi, i =
1,2, . . . , then the presence of a cubic nonlinearity E3 will cause the appearance of the
frequenciesωi ±ωj ±ωk. In particular, the frequenciesωi +ωj −ωk are most likely
to be confused as crosstalk because of the close spacing of the carrier frequencies.

Materials with a frequency-dependent dielectric constant ε(ω) are referred to as
dispersive. The frequency dependence comes about because when a time-varying elec-
tric field is applied, the polarization response of the material cannot be instantaneous.
Such dynamic response can be described by the convolutional (and causal) constitutive
relationship:

D(r, t)=
∫ t
−∞
ε(t − t′)E(r, t′)dt′ (1.3.13)

which becomes multiplicative in the frequency domain:

D(r,ω)= ε(ω)E(r,ω) (1.3.14)

All materials are, in fact, dispersive. However, ε(ω) typically exhibits strong depen-
dence onω only for certain frequencies. For example, water at optical frequencies has
refractive index n = √εrel = 1.33, but at RF down to dc, it has n = 9.
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In Sections 1.10–1.15, we discuss simple models of ε(ω) for dielectrics, conductors,
and plasmas, and clarify the nature of Ohm’s law:

J = σE (Ohm’s law) (1.3.15)

In Sec. 1.17, we discuss the Kramers-Kronig dispersion relations, which are a direct
consequence of the causality of the time-domain dielectric response function ε(t).

One major consequence of material dispersion is pulse spreading, that is, the pro-
gressive widening of a pulse as it propagates through such a material. This effect limits
the data rate at which pulses can be transmitted. There are other types of dispersion,
such as intermodal dispersion in which several modes may propagate simultaneously,
or waveguide dispersion introduced by the confining walls of a waveguide.

There exist materials that are both nonlinear and dispersive that support certain
types of non-linear waves called solitons, in which the spreading effect of dispersion is
exactly canceled by the nonlinearity. Therefore, soliton pulses maintain their shape as
they propagate in such media [1177,874,875].

More complicated forms of constitutive relationships arise in chiral and gyrotropic
media and are discussed in Chap. 4. The more general bi-isotropic and bi-anisotropic
media are discussed in [30,95]; see also [57].

In Eqs. (1.1.1), the densities ρ, J represent the external or free charges and currents
in a material medium. The induced polarization P and magnetization M may be made
explicit in Maxwell’s equations by using the constitutive relations:

D = ε0E+ P , B = μ0(H+M) (1.3.16)

Inserting these in Eq. (1.1.1), for example, by writing ∇∇∇ × B = μ0∇∇∇ × (H + M)=
μ0(J+ Ḋ+∇∇∇×M)= μ0(ε0Ė+ J+ Ṗ+∇∇∇×M), we may express Maxwell’s equations in
terms of the fields E and B :

∇∇∇× E = −∂B

∂t

∇∇∇× B = μ0ε0
∂E

∂t
+ μ0

[
J+ ∂P

∂t
+∇∇∇×M

]

∇∇∇ · E = 1

ε0

(
ρ−∇∇∇ · P)

∇∇∇ · B = 0

(1.3.17)

We identify the current and charge densities due to the polarization of the material as:

Jpol = ∂P

∂t
, ρpol = −∇∇∇ · P (polarization densities) (1.3.18)

Similarly, the quantity Jmag =∇∇∇×M may be identified as the magnetization current
density (note that ρmag = 0.) The total current and charge densities are:

Jtot = J+ Jpol + Jmag = J+ ∂P

∂t
+∇∇∇×M

ρtot = ρ+ ρpol = ρ−∇∇∇ · P

(1.3.19)
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and may be thought of as the sources of the fields in Eq. (1.3.17). In Sec. 14.6, we examine
this interpretation further and show how it leads to the Ewald-Oseen extinction theorem
and to a microscopic explanation of the origin of the refractive index.

1.4 Negative Index Media

Maxwell’s equations do not preclude the possibility that one or both of the quantities
ε, μ be negative. For example, plasmas below their plasma frequency, and metals up to
optical frequencies, have ε < 0 and μ > 0, with interesting applications such as surface
plasmons (see Sec. 8.5).

Isotropic media with μ < 0 and ε > 0 are more difficult to come by [153], although
examples of such media have been fabricated [381].

Negative-index media, also known as left-handed media, have ε, μ that are simulta-
neously negative, ε < 0 and μ < 0. Veselago [376] was the first to study their unusual
electromagnetic properties, such as having a negative index of refraction and the rever-
sal of Snel’s law.

The novel properties of such media and their potential applications have generated
a lot of research interest [376–457]. Examples of such media, termed “metamaterials”,
have been constructed using periodic arrays of wires and split-ring resonators, [382]
and by transmission line elements [415–417,437,450], and have been shown to exhibit
the properties predicted by Veselago.

When εrel < 0 and μrel < 0, the refractive index, n2 = εrelμrel, must be defined by
the negative square root n = −√εrelμrel. Because then n < 0 and μrel < 0 will imply
that the characteristic impedance of the medium η = η0μrel/n will be positive, which
as we will see later implies that the energy flux of a wave is in the same direction as the
direction of propagation. We discuss such media in Sections 2.12, 7.16, and 8.6.

1.5 Boundary Conditions

The boundary conditions for the electromagnetic fields across material boundaries are
given below:

E1t − E2t = 0

H1t −H2t = Js × n̂

D1n −D2n = ρs
B1n − B2n = 0

(1.5.1)

where n̂ is a unit vector normal to the boundary pointing from medium-2 into medium-1.
The quantities ρs, Js are any external surface charge and surface current densities on
the boundary surface and are measured in units of [coulomb/m2] and [ampere/m].

In words, the tangential components of the E-field are continuous across the inter-
face; the difference of the tangential components of the H-field are equal to the surface
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current density; the difference of the normal components of the flux density D are equal
to the surface charge density; and the normal components of the magnetic flux density
B are continuous.

The Dn boundary condition may also be written a form that brings out the depen-
dence on the polarization surface charges:

(ε0E1n + P1n)−(ε0E2n + P2n)= ρs ⇒ ε0(E1n − E2n)= ρs − P1n + P2n = ρs,tot

The total surface charge density will be ρs,tot = ρs+ρ1s,pol+ρ2s,pol, where the surface
charge density of polarization charges accumulating at the surface of a dielectric is seen
to be (n̂ is the outward normal from the dielectric):

ρs,pol = Pn = n̂ · P (1.5.2)

The relative directions of the field vectors are shown in Fig. 1.5.1. Each vector may
be decomposed as the sum of a part tangential to the surface and a part perpendicular
to it, that is, E = Et + En. Using the vector identity,

E = n̂× (E× n̂)+n̂(n̂ · E)= Et + En (1.5.3)

we identify these two parts as:

Et = n̂× (E× n̂) , En = n̂(n̂ · E)= n̂En

Fig. 1.5.1 Field directions at boundary.

Using these results, we can write the first two boundary conditions in the following
vectorial forms, where the second form is obtained by taking the cross product of the
first with n̂ and noting that Js is purely tangential:

n̂× (E1 × n̂)− n̂× (E2 × n̂) = 0

n̂× (H1 × n̂)− n̂× (H2 × n̂) = Js × n̂
or,

n̂× (E1 − E2) = 0

n̂× (H1 −H2) = Js
(1.5.4)

The boundary conditions (1.5.1) can be derived from the integrated form of Maxwell’s
equations if we make some additional regularity assumptions about the fields at the
interfaces.
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In many interface problems, there are no externally applied surface charges or cur-
rents on the boundary. In such cases, the boundary conditions may be stated as:

E1t = E2t

H1t = H2t

D1n = D2n

B1n = B2n

(source-free boundary conditions) (1.5.5)

1.6 Currents, Fluxes, and Conservation Laws

The electric current density J is an example of a flux vector representing the flow of the
electric charge. The concept of flux is more general and applies to any quantity that
flows.† It could, for example, apply to energy flux, momentum flux (which translates
into pressure force), mass flux, and so on.

In general, the flux of a quantity Q is defined as the amount of the quantity that
flows (perpendicularly) through a unit surface in unit time. Thus, if the amount ΔQ
flows through the surface ΔS in time Δt, then:

J = ΔQ
ΔSΔt

(definition of flux) (1.6.1)

When the flowing quantity Q is the electric charge, the amount of current through
the surface ΔS will be ΔI = ΔQ/Δt, and therefore, we can write J = ΔI/ΔS, with units
of [ampere/m2].

The flux is a vectorial quantity whose direction points in the direction of flow. There
is a fundamental relationship that relates the flux vector J to the transport velocity v
and the volume density ρ of the flowing quantity:

J = ρv (1.6.2)

This can be derived with the help of Fig. 1.6.1. Consider a surface ΔS oriented per-
pendicularly to the flow velocity. In timeΔt, the entire amount of the quantity contained
in the cylindrical volume of height vΔt will manage to flow through ΔS. This amount is
equal to the density of the material times the cylindrical volume ΔV = ΔS(vΔt), that
is, ΔQ = ρΔV = ρΔSvΔt. Thus, by definition:

J = ΔQ
ΔSΔt

= ρΔSvΔt
ΔSΔt

= ρv

When J represents electric current density, we will see in Sec. 1.12 that Eq. (1.6.2)
implies Ohm’s law J = σE. When the vector J represents the energy flux of a propagating
electromagnetic wave and ρ the corresponding energy per unit volume, then because the
speed of propagation is the velocity of light, we expect that Eq. (1.6.2) will take the form:

Jen = cρen (1.6.3)

†In this sense, the terms electric and magnetic “flux densities” for the quantities D,B are somewhat of a
misnomer because they do not represent anything that flows.
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Fig. 1.6.1 Flux of a quantity.

Similarly, when J represents momentum flux, we expect to have Jmom = cρmom.
Momentum flux is defined as Jmom = Δp/(ΔSΔt)= ΔF/ΔS, where p denotes momen-
tum and ΔF = Δp/Δt is the rate of change of momentum, or the force, exerted on the
surface ΔS. Thus, Jmom represents force per unit area, or pressure.

Electromagnetic waves incident on material surfaces exert pressure (known as ra-
diation pressure), which can be calculated from the momentum flux vector. It can be
shown that the momentum flux is numerically equal to the energy density of a wave, that
is, Jmom = ρen, which implies that ρen = ρmomc. This is consistent with the theory of
relativity, which states that the energy-momentum relationship for a photon is E = pc.

1.7 Charge Conservation

Maxwell added the displacement current term to Ampère’s law in order to guarantee
charge conservation. Indeed, taking the divergence of both sides of Ampère’s law and
using Gauss’s law∇∇∇ ·D = ρ, we get:

∇∇∇ ·∇∇∇×H =∇∇∇ · J+∇∇∇ · ∂D

∂t
=∇∇∇ · J+ ∂

∂t
∇∇∇ ·D =∇∇∇ · J+ ∂ρ

∂t

Using the vector identity∇∇∇·∇∇∇×H = 0, we obtain the differential form of the charge
conservation law:

∂ρ
∂t
+∇∇∇ · J = 0 (charge conservation) (1.7.1)

Integrating both sides over a closed volume V surrounded by the surface S, as
shown in Fig. 1.7.1, and using the divergence theorem, we obtain the integrated form of
Eq. (1.7.1): ∮

S
J · dS = − d

dt

∫
V
ρdV (1.7.2)

The left-hand side represents the total amount of charge flowing outwards through
the surface S per unit time. The right-hand side represents the amount by which the
charge is decreasing inside the volume V per unit time. In other words, charge does not
disappear into (or created out of) nothingness—it decreases in a region of space only
because it flows into other regions.

Another consequence of Eq. (1.7.1) is that in good conductors, there cannot be any
accumulated volume charge. Any such charge will quickly move to the conductor’s
surface and distribute itself such that to make the surface into an equipotential surface.



1.8. Energy Flux and Energy Conservation 11

Fig. 1.7.1 Flux outwards through surface.

Assuming that inside the conductor we have D = εE and J = σE, we obtain

∇∇∇ · J = σ∇∇∇ · E = σ
ε
∇∇∇ ·D = σ

ε
ρ

∂ρ
∂t
+ σ
ε
ρ = 0 (1.7.3)

with solution:
ρ(r, t)= ρ0(r)e−σt/ε

where ρ0(r) is the initial volume charge distribution. The solution shows that the vol-
ume charge disappears from inside and therefore it must accumulate on the surface of
the conductor. The “relaxation” time constant τrel = ε/σ is extremely short for good
conductors. For example, in copper,

τrel = ε
σ
= 8.85× 10−12

5.7× 107
= 1.6× 10−19 sec

By contrast, τrel is of the order of days in a good dielectric. For good conductors, the
above argument is not quite correct because it is based on the steady-state version of
Ohm’s law, J = σE, which must be modified to take into account the transient dynamics
of the conduction charges.

It turns out that the relaxation time τrel is of the order of the collision time, which
is typically 10−14 sec. We discuss this further in Sec. 1.13. See also Refs. [138–141].

1.8 Energy Flux and Energy Conservation

Because energy can be converted into different forms, the corresponding conservation
equation (1.7.1) should have a non-zero term in the right-hand side corresponding to
the rate by which energy is being lost from the fields into other forms, such as heat.
Thus, we expect Eq. (1.7.1) to have the form:

∂ρen

∂t
+∇∇∇ · Jen = rate of energy loss (1.8.1)

Assuming the ordinary constitutive relations D = εE and B = μH, the quantities
ρen, Jen describing the energy density and energy flux of the fields are defined as follows,
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where we introduce a change in notation:

ρen = w = 1

2
ε|E|2 + 1

2
μ|H|2 = energy per unit volume

Jen =PPP = E×H = energy flux or Poynting vector

(1.8.2)

where |E|2 = E · E . The quantities w and PPP are measured in units of [joule/m3] and
[watt/m2]. Using the identity∇∇∇ · (E×H)= H ·∇∇∇× E− E ·∇∇∇×H, we find:

∂w
∂t

+∇∇∇ ·PPP = ε∂E

∂t
· E+ μ∂H

∂t
·H+∇∇∇ · (E×H)

= ∂D

∂t
· E+ ∂B

∂t
·H+H ·∇∇∇× E− E ·∇∇∇×H

=
(
∂D

∂t
−∇∇∇×H

)
· E+

(
∂B

∂t
+∇∇∇× E

)
·H

Using Ampère’s and Faraday’s laws, the right-hand side becomes:

∂w
∂t

+∇∇∇ ·PPP = −J · E (energy conservation) (1.8.3)

As we discussed in Eq. (1.2.6), the quantity J·E represents the ohmic losses, that
is, the power per unit volume lost into heat from the fields. The integrated form of
Eq. (1.8.3) is as follows, relative to the volume and surface of Fig. 1.7.1:

−
∮
S
PPP · dS = d

dt

∫
V
wdV +

∫
V

J · EdV (1.8.4)

It states that the total power entering a volumeV through the surface S goes partially
into increasing the field energy stored inside V and partially is lost into heat.

Example 1.8.1: Energy concepts can be used to derive the usual circuit formulas for capaci-
tance, inductance, and resistance. Consider, for example, an ordinary plate capacitor with
plates of areaA separated by a distance l, and filled with a dielectric ε. The voltage between
the plates is related to the electric field between the plates via V = El.
The energy density of the electric field between the plates is w = εE2/2. Multiplying this
by the volume between the plates, A·l, will give the total energy stored in the capacitor.
Equating this to the circuit expression CV2/2, will yield the capacitance C:

W = 1

2
εE2 ·Al = 1

2
CV2 = 1

2
CE2l2 ⇒ C = ε A

l

Next, consider a solenoid with n turns wound around a cylindrical iron core of length
l, cross-sectional area A, and permeability μ. The current through the solenoid wire is
related to the magnetic field in the core through Ampère’s lawHl = nI. It follows that the
stored magnetic energy in the solenoid will be:

W = 1

2
μH2 ·Al = 1

2
LI2 = 1

2
L
H2l2

n2
⇒ L = n2μ

A
l

Finally, consider a resistor of length l, cross-sectional area A, and conductivity σ. The
voltage drop across the resistor is related to the electric field along it via V = El. The
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current is assumed to be uniformly distributed over the cross-section A and will have
density J = σE.

The power dissipated into heat per unit volume is JE = σE2. Multiplying this by the
resistor volume Al and equating it to the circuit expression V2/R = RI2 will give:

(J · E)(Al)= σE2(Al)= V
2

R
= E

2l2

R
⇒ R = 1

σ
l
A

The same circuit expressions can, of course, be derived more directly using Q = CV, the
magnetic flux Φ = LI, and V = RI. ��

Conservation laws may also be derived for the momentum carried by electromagnetic
fields [41,1140]. It can be shown (see Problem 1.6) that the momentum per unit volume
carried by the fields is given by:

G = D× B = 1

c2
E×H = 1

c2
PPP (momentum density) (1.8.5)

where we set D = εE, B = μH, and c = 1/√εμ. The quantity Jmom = cG = PPP/c will
represent momentum flux, or pressure, if the fields are incident on a surface.

1.9 Harmonic Time Dependence

Maxwell’s equations simplify considerably in the case of harmonic time dependence.
Through the inverse Fourier transform, general solutions of Maxwell’s equation can be
built as linear combinations of single-frequency solutions:†

E(r, t)=
∫∞
−∞

E(r,ω)ejωt
dω
2π

(1.9.1)

Thus, we assume that all fields have a time dependence ejωt:

E(r, t)= E(r)ejωt, H(r, t)= H(r)ejωt

where the phasor amplitudes E(r),H(r) are complex-valued. Replacing time derivatives
by ∂t → jω, we may rewrite Eq. (1.1.1) in the form:

∇∇∇× E = −jωB

∇∇∇×H = J+ jωD

∇∇∇ ·D = ρ
∇∇∇ · B = 0

(Maxwell’s equations) (1.9.2)

In this book, we will consider the solutions of Eqs. (1.9.2) in three different contexts:
(a) uniform plane waves propagating in dielectrics, conductors, and birefringent me-
dia, (b) guided waves propagating in hollow waveguides, transmission lines, and optical
fibers, and (c) propagating waves generated by antennas and apertures.

†The ejωt convention is used in the engineering literature, and e−iωt in the physics literature. One can
pass from one convention to the other by making the formal substitution j → −i in all the equations.
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Next, we review some conventions regarding phasors and time averages. A real-
valued sinusoid has the complex phasor representation:

A(t)= |A| cos(ωt + θ) � A(t)= Aejωt (1.9.3)

where A = |A|ejθ. Thus, we haveA(t)= Re
[
A(t)

] = Re
[
Aejωt

]
. The time averages of

the quantities A(t) and A(t) over one period T = 2π/ω are zero.
The time average of the product of two harmonic quantities A(t)= Re

[
Aejωt

]
and

B(t)= Re
[
Bejωt

]
with phasors A,B is given by (see Problem 1.4):

A(t)B(t) = 1

T

∫ T
0
A(t)B(t)dt = 1

2
Re
[
AB∗] (1.9.4)

In particular, the mean-square value is given by:

A2(t) = 1

T

∫ T
0
A2(t)dt = 1

2
Re
[
AA∗]= 1

2
|A|2 (1.9.5)

Some interesting time averages in electromagnetic wave problems are the time av-
erages of the energy density, the Poynting vector (energy flux), and the ohmic power
losses per unit volume. Using the definition (1.8.2) and the result (1.9.4), we have for
these time averages:

w = 1

2
Re
[

1

2
εE · E∗ + 1

2
μH ·H∗

]
(energy density)

PPP = 1

2
Re
[
E×H∗] (Poynting vector)

dPloss

dV
= 1

2
Re
[
Jtot · E∗

]
(ohmic losses)

(1.9.6)

where Jtot = J + jωD is the total current in the right-hand side of Ampère’s law and
accounts for both conducting and dielectric losses. The time-averaged version of Poynt-
ing’s theorem is discussed in Problem 1.5.

The expression (1.9.6) for the energy density w was derived under the assumption
that both ε andμwere constants independent of frequency. In a dispersive medium, ε, μ
become functions of frequency. In frequency bands where ε(ω),μ(ω) are essentially
real-valued, that is, where the medium is lossless, it can be shown [153] that the time-
averaged energy density generalizes to:

w = 1

2
Re
[

1

2

d(ωε)
dω

E · E∗ + 1

2

d(ωμ)
dω

H ·H∗
]

(lossless case) (1.9.7)

The derivation of (1.9.7) is as follows. Starting with Maxwell’s equations (1.1.1) and
without assuming any particular constitutive relations, we obtain:

∇∇∇ · E×H = −E · Ḋ−H · Ḃ− J · E (1.9.8)

As in Eq. (1.8.3), we would like to interpret the first two terms in the right-hand side
as the time derivative of the energy density, that is,

dw
dt

= E · Ḋ+H · Ḃ
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Anticipating a phasor-like representation, we may assume complex-valued fields and
derive also the following relationship from Maxwell’s equations:

∇∇∇ · 1

2
Re
[
E×H∗] = −1

2
Re
[
E∗· Ḋ

]− 1

2
Re
[
H∗· Ḃ

]− 1

2
Re
[
J∗· E

]
(1.9.9)

from which we may identify a “time-averaged” version of dw/dt,

dw̄
dt

= 1

2
Re
[
E∗· Ḋ

]+ 1

2
Re
[
H∗· Ḃ

]
(1.9.10)

In a dispersive dielectric, the constitutive relation between D and E can be written
as follows in the time and frequency domains:†

D(t)=
∫∞
−∞
ε(t − t′)E(t′)dt′ � D(ω)= ε(ω)E(ω) (1.9.11)

where the Fourier transforms are defined by

ε(t)= 1

2π

∫∞
−∞
ε(ω)ejωt dω � ε(ω)=

∫∞
−∞
ε(t)e−jωtdt (1.9.12)

The time-derivative of D(t) is then

Ḋ(t)=
∫∞
−∞
ε̇(t − t′)E(t′)dt′ (1.9.13)

where it follows from Eq. (1.9.12) that

ε̇(t)= 1

2π

∫∞
−∞
jωε(ω)ejωtdω (1.9.14)

Following [153], we assume a quasi-harmonic representation for the electric field,
E(t)= E0(t)ejω0t, where E0(t) is a slowly-varying function of time. Equivalently, in the
frequency domain we have E(ω)= E0(ω−ω0), assumed to be concentrated in a small
neighborhood of ω0, say, |ω −ω0| ≤ Δω. Because ε(ω) multiplies the narrowband
function E(ω), we may expandωε(ω) in a Taylor series aroundω0 and keep only the
linear terms, that is, inside the integral (1.9.14), we may replace:

ωε(ω)= a0 + b0(ω−ω0) , a0 =ω0ε(ω0) , b0 = d
[
ωε(ω)

]
dω

∣∣∣∣∣
ω0

(1.9.15)

Inserting this into Eq. (1.9.14), we obtain the approximation

ε̇(t)� 1

2π

∫∞
−∞
[
ja0 + b0(jω− jω0)

]
ejωtdω = ja0δ(t)+b0(∂t − jω0)δ(t) (1.9.16)

where δ(t) the Dirac delta function. This approximation is justified only insofar as it is
used inside Eq. (1.9.13). Inserting (1.9.16) into Eq. (1.9.13), we find

Ḋ(t) =
∫∞
−∞
[
ja0δ(t − t′)+b0(∂t − jω0)δ(t − t′)

]
E(t′)dt′ =

= ja0E(t)+b0(∂t − jω0)E(t)

= ja0E0(t)ejω0t + b0(∂t − jω0)
(
E0(t)ejω0t

)
= [ja0E0(t)+b0Ė0(t)

]
ejω0t

(1.9.17)

†To unclutter the notation, we are suppressing the dependence on the space coordinates r.
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Because we assume that ε(ω) is real (i.e., lossless) in the vicinity ofω0, it follows that:

1

2
Re
[
E∗· Ḋ

] = 1

2
Re
[
E0(t)∗·

(
ja0E0(t)+b0Ė0(t)

)] = 1

2
b0 Re

[
E0(t)∗·Ė0(t)

]
, or,

1

2
Re
[
E∗· Ḋ

] = d
dt

[
1

4
b0|E0(t)|2

]
= d
dt

[
1

4

d
[
ωε(ω)

]
0

dω
|E0(t)|2

]
(1.9.18)

Dropping the subscript 0, we see that the quantity under the time derivative in the
right-hand side may be interpreted as a time-averaged energy density for the electric
field. A similar argument can be given for the magnetic energy term of Eq. (1.9.7).

We will see in the next section that the energy density (1.9.7) consists of two parts:
one part is the same as that in the vacuum case; the other part arises from the kinetic
and potential energy stored in the polarizable molecules of the dielectric medium.

When Eq. (1.9.7) is applied to a plane wave propagating in a dielectric medium, one
can show that (in the lossless case) the energy velocity coincides with the group velocity.

The generalization of these results to the case of a lossy medium has been studied
extensively [153–167]. Eq. (1.9.7) has also been applied to the case of a “left-handed”
medium in which both ε(ω) and μ(ω) are negative over certain frequency ranges. As
argued by Veselago [376], such media must necessarily be dispersive in order to make
Eq. (1.9.7) a positive quantity even though individually ε and μ are negative.

Analogous expressions to (1.9.7) may also be derived for the momentum density of
a wave in a dispersive medium. In vacuum, the time-averaged momentum density is
given by Eq. (1.8.5), that is,

Ḡ = 1

2
Re
[
ε0μ0 E×H∗]

For the dispersive (and lossless) case this generalizes to [376,452]

Ḡ = 1

2
Re
[
εμE×H∗ + k

2

(
dε
dω

|E|2 + dμ
dω

|H|2
)]

(1.9.19)

1.10 Simple Models of Dielectrics, Conductors, and Plasmas

A simple model for the dielectric properties of a material is obtained by considering the
motion of a bound electron in the presence of an applied electric field. As the electric
field tries to separate the electron from the positively charged nucleus, it creates an
electric dipole moment. Averaging this dipole moment over the volume of the material
gives rise to a macroscopic dipole moment per unit volume.

A simple model for the dynamics of the displacement x of the bound electron is as
follows (with ẋ = dx/dt):

mẍ = eE − kx−mγẋ (1.10.1)

where we assumed that the electric field is acting in the x-direction and that there is
a spring-like restoring force due to the binding of the electron to the nucleus, and a
friction-type force proportional to the velocity of the electron.

The spring constant k is related to the resonance frequency of the spring via the
relationshipω0 =

√
k/m, or, k =mω2

0. Therefore, we may rewrite Eq. (1.10.1) as

ẍ+ γẋ+ω2
0x =

e
m
E (1.10.2)
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The limitω0 = 0 corresponds to unbound electrons and describes the case of good
conductors. The frictional term γẋ arises from collisions that tend to slow down the
electron. The parameter γ is a measure of the rate of collisions per unit time, and
therefore, τ = 1/γ will represent the mean-time between collisions.

In a typical conductor, τ is of the order of 10−14 seconds, for example, for copper,
τ = 2.4 × 10−14 sec and γ = 4.1 × 1013 sec−1. The case of a tenuous, collisionless,
plasma can be obtained in the limit γ = 0. Thus, the above simple model can describe
the following cases:

a. Dielectrics,ω0 
= 0, γ 
= 0.
b. Conductors,ω0 = 0, γ 
= 0.
c. Collisionless Plasmas,ω0 = 0, γ = 0.

The basic idea of this model is that the applied electric field tends to separate positive
from negative charges, thus, creating an electric dipole moment. In this sense, the
model contains the basic features of other types of polarization in materials, such as
ionic/molecular polarization arising from the separation of positive and negative ions
by the applied field, or polar materials that have a permanent dipole moment.

1.11 Dielectrics

The applied electric fieldE(t) in Eq. (1.10.2) can have any time dependence. In particular,
if we assume it is sinusoidal with frequencyω, E(t)= Eejωt, then, Eq. (1.10.2) will have
the solution x(t)= xejωt, where the phasor x must satisfy:

−ω2x+ jωγx+ω2
0x =

e
m
E

which is obtained by replacing time derivatives by ∂t → jω. Its solution is:

x =
e
m
E

ω2
0 −ω2 + jωγ (1.11.1)

The corresponding velocity of the electron will also be sinusoidal v(t)= vejωt, where
v = ẋ = jωx. Thus, we have:

v = jωx =
jω
e
m
E

ω2
0 −ω2 + jωγ (1.11.2)

From Eqs. (1.11.1) and (1.11.2), we can find the polarization per unit volume P.
We assume that there are N such elementary dipoles per unit volume. The individual
electric dipole moment is p = ex. Therefore, the polarization per unit volume will be:

P = Np = Nex =
Ne2

m
E

ω2
0 −ω2 + jωγ ≡ ε0χ(ω)E (1.11.3)
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The electric flux density will be then:

D = ε0E + P = ε0
(
1+ χ(ω))E ≡ ε(ω)E

where the effective permittivity ε(ω) is:

ε(ω)= ε0 +
Ne2

m
ω2

0 −ω2 + jωγ (1.11.4)

This can be written in a more convenient form, as follows:

ε(ω)= ε0 +
ε0ω2

p

ω2
0 −ω2 + jωγ (1.11.5)

whereω2
p is the so-called plasma frequency of the material defined by:

ω2
p =

Ne2

ε0m
(plasma frequency) (1.11.6)

The model defined by (1.11.5) is known as a “Lorentz dielectric.” The corresponding
susceptibility, defined through ε(ω)= ε0

(
1+ χ(ω)), is:

χ(ω)= ω2
p

ω2
0 −ω2 + jωγ (1.11.7)

For a dielectric, we may assume ω0 
= 0. Then, the low-frequency limit (ω = 0) of
Eq. (1.11.5), gives the nominal dielectric constant:

ε(0)= ε0 + ε0
ω2
p

ω2
0
= ε0 + Ne2

mω2
0

(1.11.8)

The real and imaginary parts of ε(ω) characterize the refractive and absorptive
properties of the material. By convention, we define the imaginary part with the negative
sign (because we use ejωt time dependence):

ε(ω)= ε′(ω)−jε′′(ω) (1.11.9)

It follows from Eq. (1.11.5) that:

ε′(ω)= ε0 +
ε0ω2

p(ω
2
0 −ω2)

(ω2 −ω2
0)2+γ2ω2

, ε′′(ω)= ε0ω2
pωγ

(ω2 −ω2
0)2+γ2ω2

(1.11.10)

Fig. 1.11.1 shows a plot of ε′(ω) and ε′′(ω). Around the resonant frequency ω0,
the real part ε′(ω) behaves in an anomalous manner, that is, it drops rapidly with
frequency to values less than ε0 and the material exhibits strong absorption. The term
“normal dispersion” refers to an ε′(ω) that is an increasing function of ω, as is the
case to the far left and right of the resonant frequency.
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Fig. 1.11.1 Real and imaginary parts of the effective permittivity ε(ω).

Real dielectric materials exhibit, of course, several such resonant frequencies cor-
responding to various vibrational modes and polarization mechanisms (e.g., electronic,
ionic, etc.) The permittivity becomes the sum of such terms:

ε(ω)= ε0 + ε0

∑
i

Nie2
i /miε0

ω2
i −ω2 + jωγi (1.11.11)

A more correct quantum-mechanical treatment leads essentially to the same formula:

ε(ω)= ε0 + ε0

∑
j>i

fji(Ni −Nj)e2/mε0

ω2
ji −ω2 + jωγji (1.11.12)

where ωji are transition frequencies between energy levels, that is, ωji = (Ej − Ei)/�,
and Ni,Nj are the populations of the lower, Ei, and upper, Ej, energy levels. The quan-
tities fji are called “oscillator strengths.” For example, for a two-level atom we have:

ε(ω)= ε0 + ε0
fω2

p

ω2
0 −ω2 + jωγ (1.11.13)

where we defined:

ω0 =ω21 , f = f21
N1 −N2

N1 +N2
, ω2

p =
(N1 +N2)e2

mε0

Normally, lower energy states are more populated,Ni > Nj, and the material behaves
as a classical absorbing dielectric. However, if there is population inversion, Ni < Nj,
then the corresponding permittivity term changes sign. This leads to a negative imag-
inary part, ε′′(ω), representing a gain. Fig. 1.11.2 shows the real and imaginary parts
of Eq. (1.11.13) for the case of a negative effective oscillator strength f = −1.

The normal and anomalous dispersion bands still correspond to the bands where
the real part ε′(ω) is an increasing or decreasing, respectively, function of frequency.
But now the normal behavior is only in the neighborhood of the resonant frequency,
whereas far from it, the behavior is anomalous.

Setting n(ω)= √ε(ω)/ε0 for the refractive index, Eq. (1.11.11) can be written in the
following form, known as the Sellmeier equation (where the Bi are constants):

n2(ω)= 1+
∑
i

Biω2
i

ω2
i −ω2 + jωγi (1.11.14)
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Fig. 1.11.2 Effective permittivity in a two-level gain medium with f = −1.

In practice, Eq. (1.11.14) is applied in frequency ranges that are far from any reso-
nance so that one can effectively set γi = 0:

n2(ω)= 1+
∑
i

Biω2
i

ω2
i −ω2

= 1+
∑
i

Bi λ2

λ2 − λ2
i

(Sellmeier equation) (1.11.15)

where λ,λi denote the corresponding free-space wavelengths (e.g., λ = 2πc/ω). In
practice, refractive index data are fitted to Eq. (1.11.15) using 2–4 terms over a desired
frequency range. For example, fused silica (SiO2) is very accurately represented over the
range 0.2 ≤ λ ≤ 3.7 μm by the following formula [147], where λ and λi are in units of
μm:

n2 = 1+ 0.6961663λ2

λ2 − (0.0684043)2
+ 0.4079426λ2

λ2 − (0.1162414)2
+ 0.8974794λ2

λ2 − (9.896161)2
(1.11.16)

1.12 Conductors

The conductivity properties of a material are described by Ohm’s law, Eq. (1.3.15). To
derive this law from our simple model, we use the relationship J = ρv, where the volume
density of the conduction charges is ρ = Ne. It follows from Eq. (1.11.2) that

J = ρv = Nev =
jω
Ne2

m
E

ω2
0 −ω2 + jωγ ≡ σ(ω)E

and therefore, we identify the conductivity σ(ω):

σ(ω)=
jω
Ne2

m
ω2

0 −ω2 + jωγ =
jωε0ω2

p

ω2
0 −ω2 + jωγ (1.12.1)

We note that σ(ω)/jω is essentially the electric susceptibility considered above.
Indeed, we have J = Nev = Nejωx = jωP, and thus, P = J/jω = (σ(ω)/jω)E. It
follows that ε(ω)−ε0 = σ(ω)/jω, and

ε(ω)= ε0 +
ε0ω2

p

ω2
0 −ω2 + jωγ = ε0 + σ(ω)jω

(1.12.2)
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Since in a metal the conduction charges are unbound, we may take ω0 = 0 in
Eq. (1.12.1). After canceling a common factor of jω , we obtain:

σ(ω)= ε0ω2
p

γ+ jω (1.12.3)

The model defined by (1.12.3) is know as the “Drude model.” The nominal conduc-
tivity is obtained at the low-frequency limit,ω = 0:

σ = ε0ω2
p

γ
= Ne

2

mγ
(nominal conductivity) (1.12.4)

Example 1.12.1: Copper has a mass density of 8.9 × 106 gr/m3 and atomic weight of 63.54
(grams per mole.) Using Avogadro’s number of 6 × 1023 atoms per mole, and assuming
one conduction electron per atom, we find for the volume density N:

N =
6× 1023 atoms

mole

63.54
gr

mole

(
8.9× 106 gr

m3

)(
1

electron

atom

) = 8.4× 1028 electrons/m3

It follows that:

σ = Ne
2

mγ
= (8.4× 1028)(1.6× 10−19)2

(9.1× 10−31)(4.1× 1013)
= 5.8× 107 Siemens/m

where we used e = 1.6 × 10−19, m = 9.1 × 10−31, γ = 4.1 × 1013. The plasma frequency
of copper can be calculated by

fp = ωp
2π

= 1

2π

√
Ne2

mε0
= 2.6× 1015 Hz

which lies in the ultraviolet range. For frequencies such that ω � γ, the conductivity
(1.12.3) may be considered to be independent of frequency and equal to the dc value of
Eq. (1.12.4). This frequency range covers most present-day RF applications. For example,
assumingω ≤ 0.1γ, we find f ≤ 0.1γ/2π = 653 GHz. ��

So far, we assumed sinusoidal time dependence and worked with the steady-state
responses. Next, we discuss the transient dynamical response of a conductor subject to
an arbitrary time-varying electric field E(t).

Ohm’s law can be expressed either in the frequency-domain or in the time-domain
with the help of the Fourier transform pair of equations:

J(ω)= σ(ω)E(ω) � J(t)=
∫ t
−∞
σ(t − t′)E(t′)dt′ (1.12.5)

where σ(t) is the causal inverse Fourier transform of σ(ω). For the simple model of
Eq. (1.12.3), we have:

σ(t)= ε0ω2
pe−γtu(t) (1.12.6)
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where u(t) is the unit-step function. As an example, suppose the electric field E(t) is a
constant electric field that is suddenly turned on at t = 0, that is, E(t)= Eu(t). Then,
the time response of the current will be:

J(t)=
∫ t

0
ε0ω2

pe−γ(t−t
′)Edt′ = ε0ω2

p

γ
E
(
1− e−γt) = σE(1− e−γt)

where σ = ε0ω2
p/γ is the nominal conductivity of the material.

Thus, the current starts out at zero and builds up to the steady-state value of J = σE,
which is the conventional form of Ohm’s law. The rise time constant is τ = 1/γ. We
saw above that τ is extremely small—of the order of 10−14 sec—for good conductors.

The building up of the current can also be understood in terms of the equation of
motion of the conducting charges. Writing Eq. (1.10.2) in terms of the velocity of the
charge, we have:

v̇(t)+γv(t)= e
m
E(t)

Assuming E(t)= Eu(t), we obtain the convolutional solution:

v(t)=
∫ t

0
e−γ(t−t

′) e
m
E(t′)dt′ = e

mγ
E
(
1− e−γt)

For large t, the velocity reaches the steady-state value v∞ = (e/mγ)E, which reflects
the balance between the accelerating electric field force and the retarding frictional force,
that is,mγv∞ = eE. The quantity e/mγ is called the mobility of the conduction charges.
The steady-state current density results in the conventional Ohm’s law:

J = Nev∞ = Ne
2

mγ
E = σE

1.13 Charge Relaxation in Conductors

Next, we discuss the issue of charge relaxation in good conductors [138–141]. Writing
(1.12.5) three-dimensionally and using (1.12.6), Ohm’s law reads in the time domain:

J(r, t)=ω2
p

∫ t
−∞
e−γ(t−t

′)ε0 E(r, t′)dt′ (1.13.1)

Taking the divergence of both sides and using charge conservation, ∇∇∇ · J + ρ̇ = 0,
and Gauss’s law, ε0∇∇∇ · E = ρ, we obtain the following integro-differential equation for
the charge density ρ(r, t):

−ρ̇(r, t)=∇∇∇ · J(r, t)=ω2
p

∫ t
−∞
e−γ(t−t

′)ε0∇∇∇ · E(r, t′)dt′ =ω2
p

∫ t
−∞
e−γ(t−t

′)ρ(r, t′)dt′

Differentiating both sides with respect to t, we find that ρ satisfies the second-order
differential equation:

ρ̈(r, t)+γρ̇(r, t)+ω2
pρ(r, t)= 0 (1.13.2)

whose solution is easily verified to be a linear combination of:

e−γt/2 cos(ωrelaxt) , e−γt/2 sin(ωrelaxt) , where ωrelax =
√
ω2
p − γ

2

4



1.14. Power Losses 23

Thus, the charge density is an exponentially decaying sinusoid with a relaxation time
constant that is twice the collision time τ = 1/γ:

τrelax = 2

γ
= 2τ (relaxation time constant) (1.13.3)

Typically, ωp � γ, so that ωrelax is practically equal to ωp. For example, using
the numerical data of Example 1.12.1, we find for copper τrelax = 2τ = 5×10−14 sec.
We calculate also: frelax = ωrelax/2π = 2.6×1015 Hz. In the limit γ → ∞, or τ → 0,
Eq. (1.13.2) reduces to the naive relaxation equation (1.7.3) (see Problem 1.9).

In addition to charge relaxation, the total relaxation time depends on the time it takes
for the electric and magnetic fields to be extinguished from the inside of the conductor,
as well as the time it takes for the accumulated surface charge densities to settle, the
motion of the surface charges being damped because of ohmic losses. Both of these
times depend on the geometry and size of the conductor [140].

1.14 Power Losses

To describe a material with both dielectric and conductivity properties, we may take the
susceptibility to be the sum of two terms, one describing bound polarized charges and
the other unbound conduction charges. Assuming different parameters {ω0,ωp,γ} for
each term, we obtain the total permittivity:

ε(ω)= ε0 +
ε0ω2

dp

ω2
d0 −ω2 + jωγd +

ε0ω2
cp

jω(γc + jω) (1.14.1)

Denoting the first two terms by εd(ω) and the third by σc(ω)/jω, we obtain the
total effective permittivity of such a material:

ε(ω)= εd(ω)+σc(ω)jω
(effective permittivity) (1.14.2)

In the low-frequency limit, ω = 0, the quantities εd(0) and σc(0) represent the
nominal dielectric constant and conductivity of the material. We note also that we can
write Eq. (1.14.2) in the form:

jωε(ω)= σc(ω)+jωεd(ω) (1.14.3)

These two terms characterize the relative importance of the conduction current and
the displacement (polarization) current. The right-hand side in Ampère’s law gives the
total effective current:

Jtot = J + ∂D∂t = J + jωD = σc(ω)E + jωεd(ω)E = jωε(ω)E

where the term Jdisp = ∂D/∂t = jωεd(ω)E represents the displacement current. The
relative strength between conduction and displacement currents is the ratio:
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∣∣∣∣∣Jcond

Jdisp

∣∣∣∣∣ = |σc(ω)E|
|jωεd(ω)E| =

|σc(ω)|
|ωεd(ω)| (1.14.4)

This ratio is frequency-dependent and establishes a dividing line between a good
conductor and a good dielectric. If the ratio is much larger than unity (typically, greater
than 10), the material behaves as a good conductor at that frequency; if the ratio is much
smaller than one (typically, less than 0.1), then the material behaves as a good dielectric.

Example 1.14.1: This ratio can take a very wide range of values. For example, assuming a
frequency of 1 GHz and using (for illustration purposes) the dc-values of the dielectric
constants and conductivities, we find:

∣∣∣∣∣Jcond

Jdisp

∣∣∣∣∣ = σ
ωε

=
⎧⎪⎨
⎪⎩

109 for copper with σ = 5.8×107 S/m and ε = ε0

1 for seawater with σ = 4 S/m and ε = 72ε0

10−9 for a glass with σ = 10−10 S/m and ε = 2ε0

Thus, the ratio varies over 18 orders of magnitude! If the frequency is reduced by a factor
of ten to 100 MHz, then all the ratios get multiplied by 10. In this case, seawater acts like
a good conductor. ��

The time-averaged ohmic power losses per unit volume within a lossy material are
given by Eq. (1.9.6). Writing ε(ω)= ε′(ω)−jε′′(ω), we have:

Jtot = jωε(ω)E = jωε′(ω)E+ωε′′(ω)E

Denoting
∣∣E
∣∣2 = E · E∗, it follows that:

dPloss

dV
= 1

2
Re
[
Jtot · E∗

] = 1

2
ωε′′(ω)

∣∣E
∣∣2

(ohmic losses) (1.14.5)

Writing εd(ω)= ε′d(ω)−jε′′d (ω) and assuming that the conductivity σc(ω) is real-
valued for the frequency range of interest (as was discussed in Example 1.12.1), we find
by equating real and imaginary parts of Eq. (1.14.2):

ε′(ω)= ε′d(ω) , ε′′(ω)= ε′′d (ω)+
σc(ω)
ω

(1.14.6)

Then, the power losses can be written in a form that separates the losses due to
conduction and those due to the polarization properties of the dielectric:

dPloss

dV
= 1

2

(
σc(ω)+ωε′′d (ω)

)∣∣E
∣∣2

(ohmic losses) (1.14.7)

A convenient way to quantify the losses is by means of the loss tangent defined in
terms of the real and imaginary parts of the effective permittivity:

tanθ = ε
′′(ω)
ε′(ω)

(loss tangent) (1.14.8)

where θ is the loss angle. Eq. (1.14.8) may be written as the sum of two loss tangents,
one due to conduction and one due to polarization. Using Eq. (1.14.6), we have:
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tanθ = σc(ω)+ωε
′′
d (ω)

ωε′d(ω)
= σc(ω)
ωε′d(ω)

+ ε
′′
d (ω)
ε′d(ω)

= tanθc + tanθd (1.14.9)

The ohmic loss per unit volume can be expressed in terms of the loss tangent as:

dPloss

dV
= 1

2
ωε′d(ω)tanθ

∣∣E
∣∣2

(ohmic losses) (1.14.10)

1.15 Plasmas

To describe a collisionless plasma, such as the ionosphere, the simple model consid-
ered in the previous sections can be specialized by choosing ω0 = γ = 0. Thus, the
conductivity given by Eq. (1.12.3) becomes pure imaginary:

σ(ω)= ε0ω2
p

jω

The corresponding effective permittivity of Eq. (1.12.2) becomes purely real:

ε(ω)= ε0 + σ(ω)jω
= ε0

(
1− ω

2
p

ω2

)
(1.15.1)

The plasma frequency can be calculated from ω2
p = Ne2/mε0. In the ionosphere

the electron density is typically N = 1012, which gives fp = 9 MHz.
We will see in Sec. 2.6 that the propagation wavenumber of an electromagnetic wave

propagating in a dielectric/conducting medium is given in terms of the effective permit-
tivity by:

k =ω
√
με(ω)

It follows that for a plasma:

k =ω
√
μ0ε0

(
1−ω2

p/ω2
) = 1

c

√
ω2 −ω2

p (1.15.2)

where we used c = 1/√μ0ε0.
If ω > ωp, the electromagnetic wave propagates without attenuation within the

plasma. But if ω < ωp, the wavenumber k becomes imaginary and the wave gets
attenuated. At such frequencies, a wave incident (normally) on the ionosphere from the
ground cannot penetrate and gets reflected back.

1.16 Energy Density in Lossless Dispersive Dielectrics

The lossless case is obtained from Eq. (1.11.5) by setting γ = 0, which is equivalent to
assuming thatω is far from the resonanceω0. In this case the permittivity is:

ε(ω)= ε0

[
1+ ω2

p

ω2
0 −ω2

]
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from which it follows that:

d(ωε)
dω

= ε0

[
1+ ω

2
p(ω2 +ω2

0)
(ω2

0 −ω2)2

]
(1.16.1)

Thus, the electric part of the energy density (1.9.7) will be:

w̄e = 1

4

d(ωε)
dω

|E|2 = 1

4
ε0|E|2

[
1+ ω

2
p(ω2 +ω2

0)
(ω2

0 −ω2)2

]
(1.16.2)

This expression can be given a nice interpretation: The first term on the right is the
energy density in vacuum and the second corresponds to the mechanical (kinetic and
potential) energy of the polarization charges [154,177]. Indeed, the displacement x and
velocity v = ẋ of the polarization charges are in this case:

x = eE/m
ω2

0 −ω2
, v = jωx

The time-averaged mechanical energy (per unit volume) is obtained by adding the
kinetic and potential energies:

w̄mech = 1

2
Re
[
N
(

1

2
m|v|2 + 1

2
mω2

0|x|2
)]

= 1

4
Nm(ω2 +ω2

0)|x|2

= 1

4

Nm(ω2 +ω2
0)e2|E|2/m2

(ω2
0 −ω2)2

= 1

4
ε0|E|2

[
ω2
p(ω2 +ω2

0)
(ω2

0 −ω2)2

]

where we used the definition (1.11.6) of the plasma frequency. It follows that Eq. (1.16.2)
can be written as the sum:

w̄e = 1

4

d(ωε)
dω

|E|2 = 1

4
ε0|E|2 + w̄mech = w̄vac + w̄mech (1.16.3)

1.17 Kramers-Kronig Dispersion Relations

The convolutional form of Eq. (1.3.13) implies causality, that is, the value of D(r, t) at
the present time t depends only on the past values of E(r, t′), t′ ≤ t.

This condition is equivalent to requiring that the dielectric response ε(t) be a right-
sided (causal) function of time, that is, ε(t)= 0 for t < 0. Then, Eq. (1.3.13) may be
written as ordinary convolution by extending the integration range over all times:

D(r, t)=
∫ t
−∞
ε(t − t′)E(r, t′)dt′ =

∫∞
−∞
ε(t − t′)E(r, t′)dt′

Because D(r, t)= ε0E(r, t)+P(r, t), we may define the time-domain susceptibility
function χ(t) through:

ε(t)= ε0δ(t)+ε0χ(t) (1.17.1)

where δ(t) is the Dirac delta function. Therefore, if ε(t) is causal, so is χ(t). The
polarization is then given by:

P(r, t)= ε0

∫ t
−∞
χ(t − t′)E(r, t′)dt′ = ε0

∫∞
−∞
χ(t − t′)E(r, t′)dt′ (1.17.2)
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In the frequency domain, this becomes multiplicative: P(r,ω)= ε0χ(ω)E(r,ω).
The Kramers-Kronig relations are the frequency-domain expression of causality and re-
late the real and imaginary parts of the susceptibility functionχ(ω). Here, the functions
χ(t) and χ(ω) are Fourier transform pairs:

χ(ω)=
∫∞
−∞
χ(t)e−jωtdt � χ(t)= 1

2π

∫∞
−∞
χ(ω)ejωtdω (1.17.3)

The causality condition, χ(t)= 0 for t < 0, can be expressed in terms of the unit-step
function u(t) in the equivalent manner:

χ(t)= χ(t)u(t) , for all t (1.17.4)

Using the property that the Fourier transform of a product of two time functions is
the convolution of their Fourier transforms, it follows that Eq. (1.17.4) can be written in
the equivalent frequency-domain form:

χ(ω)= 1

2π

∫∞
−∞
χ(ω′)U(ω−ω′)dω′ (1.17.5)

where U(ω) is the Fourier transform of the unit-step. Eq. (1.17.5) is essentially the
Kramers-Kronig relation. The function U(ω) is given by the well-known expression:

U(ω)= lim
ε→0+

1

jω+ ε = P 1

jω
+πδ(ω) (1.17.6)

where P denotes the “principal value.” Inserting (1.17.6) into (1.17.5), we have:

χ(ω) = 1

2π

∫∞
−∞
χ(ω′)

[
P 1

j(ω−ω′)
+πδ(ω−ω′)

]
dω′

= 1

2πj
P
∫∞
−∞

χ(ω′)
ω−ω′dω

′ + 1

2
χ(ω)

Rearranging terms and canceling a factor of 1/2, we obtain the Kramers-Kronig re-
lation in its complex-valued form:†

χ(ω)= 1

πj
P
∫∞
−∞

χ(ω′)
ω−ω′dω

′ (Kramers-Kronig) (1.17.7)

The reason for applying this relation to χ(ω) instead of ε(ω) is that χ(ω) falls off
sufficiently fast for large ω to make the integral in (1.17.5) convergent, whereas ε(ω)
tends to the constant ε0.

Setting χ(ω)= χr(ω)−jχi(ω) and separating (1.17.7) into its real and imaginary
parts, we obtain the conventional form of the Kramers-Kronig dispersion relations:

χr(ω) = 1

π
P
∫∞
−∞
χi(ω′)
ω′ −ωdω

′

χi(ω) = − 1

π
P
∫∞
−∞
χr(ω′)
ω′ −ωdω

′
(Kramers-Kronig relations) (1.17.8)

†The right-hand side (without the j) in (1.17.7) is known as a Hilbert transform. Exchanging the roles
of t and ω, such transforms, known also as 90o phase shifters, are used widely in signal processing for
generating single-sideband communications signals.
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Because the time-response χ(t) is real-valued, its Fourier transform χ(ω) will sat-
isfy the Hermitian symmetry property χ(−ω)= χ∗(ω), which is equivalent to the even
symmetry of its real part, χr(−ω)= χr(ω), and the odd symmetry of its imaginary part,
χi(−ω)= −χi(ω). Taking advantage of these symmetries, the range of integration in
(1.17.8) can be folded in half resulting in:

χr(ω) = 2

π
P
∫∞

0

ω′χi(ω′)
ω′2 −ω2

dω′

χi(ω) = − 2

π
P
∫∞

0

ωχr(ω′)
ω′2 −ω2

dω′
(1.17.9)

There are several other ways to prove the Kramers-Kronig relations. For example,
a more direct way is to state the causality condition in terms of the signum function
sign(t). Indeed, because u(t)= (

1 + sign(t)
)
/2, Eq. (1.17.4) may be written in the

equivalent form χ(t)= χ(t)sign(t). Then, Eq. (1.17.7) follows by applying the same
frequency-domain convolution argument using the Fourier transform pair:

sign(t) � P 2

jω
(1.17.10)

Alternatively, the causality condition can be expressed as u(−t)χ(t)= 0. This ap-
proach is explored in Problem 1.12. Another proof is based on the analyticity properties
of χ(ω). Because of the causality condition, the Fourier integral in (1.17.3) can be re-
stricted to the time range 0 < t <∞:

χ(ω)=
∫∞
−∞
e−jωtχ(t)dt =

∫∞
0
e−jωtχ(t)dt (1.17.11)

This implies that χ(ω) can be analytically continued into the lower half ω-plane,
so that replacingω by w =ω− jα with α ≥ 0 still gives a convergent Fourier integral
in Eq. (1.17.11). Any singularities in χ(ω) lie in the upper-half plane. For example, the

simple model of Eq. (1.11.7) has poles atω = ±ω̄0 + jγ/2, where ω̄0 =
√
ω2

0 − γ2/4.
Next, we consider a clockwise closed contour C = C′ +C∞ consisting of the real axis

C′ and an infinite semicircle C∞ in the lower half-plane. Because χ(ω) is analytic in the
region enclosed by C, Cauchy’s integral theorem implies that for any point w enclosed
by C, that is, lying in the lower half-plane, we must have:

χ(w)= − 1

2πj

∮
C

χ(w′)
w′ −w dw

′ (1.17.12)

where the overall minus sign arises becauseC was taken to be clockwise. Assuming that
χ(ω) falls off sufficiently fast for large ω, the contribution of the infinite semicircle
can be ignored, thus leaving only the integral over the real axis. Setting w =ω− jε and
taking the limit ε→ 0+, we obtain the identical relationship to Eq. (1.17.5):

χ(ω)= − lim
ε→0+

1

2πj

∫∞
−∞

χ(ω′)
ω′ −ω+ jε dω

′ = 1

2π

∫∞
−∞
χ(ω′) lim

ε→0+
1

j(ω−ω′)+ε dω
′
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An interesting consequence of the Kramers-Kronig relations is that there cannot
exist a dielectric medium that is purely lossless, that is, such that χi(ω)= 0 for all ω,
because this would also require that χr(ω)= 0 for allω.

However, in all materials, χi(ω) is significantly non-zero only in the neighborhoods
of the medium’s resonant frequencies, as for example in Fig. 1.11.1. In the frequency
bands that are sufficiently far from the resonant bands, χi(ω) may be assumed to be
essentially zero. Such frequency bands are called transparency bands [153].

1.18 Group Velocity, Energy Velocity

Assuming a nonmagnetic material (μ = μ0), a complex-valued refractive index may be
defined by:

n(ω)= nr(ω)−jni(ω)=
√

1+ χ(ω) =
√
ε(ω)
ε0

(1.18.1)

where nr, ni are its real and imaginary parts. Setting χ = χr− jχi we have the condition
nr − jni =

√
1+ χr − jχi. Upon squaring, this splits into the two real-valued equations

n2
r − n2

i = 1+ χr and 2nrni = χi, with solutions:

nr =
⎡
⎣
√
(1+ χr)2+χ2

i + (1+ χr)
2

⎤
⎦

1/2

ni = sign(χi)

⎡
⎣
√
(1+ χr)2+χ2

i − (1+ χr)
2

⎤
⎦

1/2

= χi
2nr

(1.18.2)

This form preserves the sign of χi, that is, ni and χi are both positive for absorbing
media, or both negative for gain media. The following approximate solution is often
used, which can be justified whenever |χ| � 1 (for example, in gases):

nr(ω)−jnr(ω)=
√

1+ χ(ω) � 1+ χ
2

⇒ nr = 1+ 1

2
χr , ni = 1

2
χi (1.18.3)

We will see in Chap. 2 that a single-frequency uniform plane wave propagating, say,
in the positive z-direction, has a wavenumber k = ωn/c = ω(nr − jni)/c ≡ β − jα,
where c is the speed of light in vacuum. Therefore, the wave will have a space-time
dependence:

ej(ωt−kz) = ej(ωt−(β−jα)z) = e−αzej(ωt−βz) = e−ωniz/cejω(t−nrz/c) (1.18.4)

The real part nr defines the phase velocity of the wave, vp = ω/β = c/nr , whereas
the imaginary part ni, or α =ωni/c, corresponds to attenuation or gain depending on
the sign of ni or χi.

When several such plane waves are superimposed to form a propagating pulse, we
will see in Sec. 3.5 that the peak of the pulse (i.e., the point on the pulse where all the
individual frequency components add up in phase), propagates with the so-called group
velocity defined by:

vg = dωdβ = 1
dβ
dω

= c
d(ωnr)
dω

= c

nr +ωdnrdω
= group velocity (1.18.5)
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A group refractive index may be defined through vg = c/ng, or, ng = c/vg:

ng = d(ωnr)dω
= nr +ωdnrdω = nr − λdnrdλ = group refractive index (1.18.6)

where λ is the free-space wavelength related to ω by λ = 2πc/ω, and we used the
differentiation property thatωd/dω = −λd/dλ.

Within an anomalous dispersion region, nr is decreasing rapidly with ω, that is,
dnr/dω < 0, as in Fig. 1.11.1. This results in a group velocity vg, given by Eq. (1.18.5),
that may be larger than c or even negative. Such velocities are called “superluminal.”
Light pulses propagating at superluminal group velocities are referred to as “fast light”
and we discuss them further in Sec. 3.9.

Within a normal dispersion region (e.g., to the far left and far right of the resonant
frequency ω0 in Fig. 1.11.1), nr is an increasing function of ω, dnr/dω > 0, which
results in vg < c. In specially engineered materials such as those exhibiting “electro-
magnetically induced transparency,” the slope dnr/dω may be made so steep that the
resulting group velocity vg becomes extremely small, vg � c. This is referred to as
“slow light.”

We close this section by showing that for lossless dispersive media, the energy ve-
locity of a plane wave is equal to the group velocity defined by (1.18.5). This result is
quite general, regardless of the frequency dependence of ε(ω) and μ(ω) (as long as
these quantities are real.)

We will see in the next chapter that a plane wave propagating along the z-direction
has electric and magnetic fields that are transverse to the z-direction and are related by:

|H| = 1

η
|E| , η =

√
μ
ε

Moreover the time-averaged energy flux (in the z-direction) and energy density are:

P̄z = |E|2
2η

, w̄ = 1

4

d(ωε)
dω

|E|2 + 1

4

d(ωμ)
dω

|H|2 = 1

4

[
d(ωε)
dω

+ 1

η2

d(ωμ)
dω

]
|E|2

The energy velocity is defined by ven = P̄z/w̄. Thus, we have:

v−1
en =

w̄
P̄z =

1

2

[
η
d(ωε)
dω

+ 1

η
d(ωμ)
dω

]
= 1

2

[√
μ
ε
d(ωε)
dω

+
√
ε
μ
d(ωμ)
dω

]

It is easily verified that the right-hand side can be expressed in terms of the wave-
number k =ω√εμ in the form:

v−1
en =

1

2

[√
μ
ε
d(ωε)
dω

+
√
ε
μ
d(ωμ)
dω

]
= d

(
ω√εμ)
dω

= dk
dω

= v−1
g (1.18.7)

which shows the equality of the energy and group velocities. See Refs. [153–167] for
further discussion on this topic.

Eq. (1.18.7) is also valid for the case of lossless negative-index media and implies that
the group velocity, and hence the group refractive index ng = c0/vg, will be positive,
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even though the refractive index n is negative. Writing ε = −|ε| and μ = −|μ| in this
case and noting that η = √|μ|/|ε| and n = −√|εμ|/√ε0μ0, and k =ωn/c0, we have:

v−1
en =

1

2

[√
|μ|
|ε|
d(ωε)
dω

+
√
|ε|
|μ|
d(ωμ)
dω

]
= −1

2

[√
|μ|
|ε|
d(ω|ε|)
dω

+
√
|ε|
|μ|
d(ω|μ|)
dω

]

= −d
(
ω
√|εμ|)
dω

= 1

c0

d(ωn)
dω

= dk
dω

= v−1
g

from which we also obtain the usual relationship ng = d(ωn)/dω. The positivity of
vg and ng follows from the positivity of the derivatives d(ωε)/dω and d(ωμ)/dω, as
required to keep ven positive in negative-index media [376].

1.19 Problems

1.1 Prove the vector algebra identities:

A× (B× C)= B(A · C)−C(A · B) (BAC-CAB identity)
A · (B× C)= B · (C× A)= C · (A× B)
|A× B|2 + |A · B|2 = |A|2|B|2
A = n̂× A× n̂+ (n̂ · A)n̂ (n̂ is any unit vector)

In the last identity, does it a make a difference whether n̂×A× n̂ is taken to mean n̂×(A× n̂)
or (n̂× A)×n̂?

1.2 Prove the vector analysis identities:

∇∇∇× (∇∇∇φ)= 0
∇∇∇ · (φ∇∇∇ψ)= φ∇2ψ+∇∇∇φ ·∇∇∇ψ (Green’s first identity)
∇∇∇ · (φ∇∇∇ψ−ψ∇∇∇φ)= φ∇2ψ−ψ∇2φ (Green’s second identity)
∇∇∇ · (φA)= (∇∇∇φ)·A+φ∇∇∇ · A
∇∇∇× (φA)= (∇∇∇φ)×A+φ∇∇∇× A
∇∇∇ · (∇∇∇× A)= 0
∇∇∇ · A× B = B · (∇∇∇× A)−A · (∇∇∇× B)
∇∇∇× (∇∇∇× A)=∇∇∇(∇∇∇ · A)−∇2A

1.3 Consider the infinitesimal volume element ΔxΔyΔz shown below, such that its upper half
lies in medium ε1 and its lower half in medium ε2. The axes are oriented such that n̂ = ẑ.
Applying the integrated form of Ampère’s law to the infinitesimal face abcd, show that

H2y −H1y = JxΔz+ ∂Dx∂t Δz

In the limit Δz → 0, the second term in the right-hand side may be assumed to go to zero,
whereas the first term will be non-zero and may be set equal to a surface current density,
that is, Jsx ≡ limΔz→0(JxΔz). Show that this leads to the boundary condition H1y −H2y =
−Jsx. Similarly, show that H1x −H2x = Jsy, and that these two boundary conditions can be
combined vectorially into Eq. (1.5.4).
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Next, apply the integrated form of Gauss’s law to the same volume element and show the
boundary condition: D1z −D2z = ρs = limΔz→0(ρΔz).

1.4 Show that the time average of the product of two harmonic quantities A(t)= Re
[
Aejωt

]
and B(t)= Re

[
Bejωt

]
with phasors A,B is given by:

A(t)B(t) = 1

T

∫ T
0
A(t)B(t)dt = 1

2
Re
[
AB∗]

where T = 2π/ω is one period. Then, show that the time-averaged values of the cross
and dot products of two time-harmonic vector quantities AAA(t)= Re

[
Aejωt

]
and BBB(t)=

Re
[
Bejωt

]
can be expressed in terms of the corresponding phasors as follows:

AAA(t)×BBB(t) = 1

2
Re
[
A× B∗

]
, AAA(t)·BBB(t) = 1

2
Re
[
A · B∗

]

1.5 Assuming that B = μH, show that Maxwell’s equations (1.9.2) imply the following complex-
valued version of Poynting’s theorem:

∇∇∇ · (E×H∗)= −jωμH ·H∗ − E · J∗tot, where Jtot = J+ jωD

Extracting the real-parts of both sides and integrating over a volume V bounded by a closed
surface S, show the time-averaged form of energy conservation:

−
∮
S

1

2
Re[E×H∗]·dS =

∫
V

1

2
Re[E · J∗tot]dV

which states that the net time-averaged power flowing into a volume is dissipated into heat.
For a lossless dielectric, show that the above integrals are zero and provide an interpretation.

1.6 Assuming that D = εE and B = μH, show that Maxwell’s equations (1.1.1) imply the following
relationships:

ρEx +
(
D× ∂B

∂t
)
x =∇∇∇ ·

(
εExE− x̂

1

2
εE2

)

(J× B)x+
(∂D

∂t
× B

)
x =∇∇∇ ·

(
μHxH− x̂

1

2
μH2

)

where the subscript xmeans the x-component. From these, derive the following relationship
that represents momentum conservation:

fx + ∂Gx∂t =∇∇∇ · Tx (1.19.1)

where fx, Gx are the x-components of the vectors f = ρE + J × B and G = D × B, and Tx is
defined to be the vector (equal to Maxwell’s stress tensor acting on the unit vector x̂):
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Tx = εExE+ μHxH− x̂
1

2
(εE2 + μH2)

Write similar equations of the y, z components. The quantity Gx is interpreted as the field
momentum (in the x-direction) per unit volume, that is, the momentum density.

1.7 Show that the causal and stable time-domain dielectric response corresponding to Eq. (1.11.5)
is given as follows:

ε(t)= ε0δ(t)+ε0χ(t) , χ(t)= ω
2
p

ω̄0
e−γt/2 sin(ω̄0t)u(t) (1.19.2)

where u(t) is the unit-step function and ω̄0 =
√
ω2

0 − γ2/4, and we must assume that
γ < 2ω0, as is typically the case in practice. Discuss the solution for the case γ/2 > ω0.

1.8 Show that the plasma frequency for electrons can be expressed in the simple numerical form:
fp = 9

√
N, where fp is in Hz and N is the electron density in electrons/m3. What is fp for

the ionosphere if N = 1012? [Ans. 9 MHz.]

1.9 Show that the relaxation equation (1.13.2) can be written in the following form in terms of
the dc-conductivity σ defined by Eq. (1.12.4):

1

γ
ρ̈(r, t)+ρ̇(r, t)+ σ

ε0
ρ(r, t)= 0

Then, show that it reduces to the naive relaxation equation (1.7.3) in the limit τ = 1/γ→ 0.
Show also that in this limit, Ohm’s law (1.13.1) takes the instantaneous form J = σE, from
which the naive relaxation constant τrelax = ε0/σ was derived.

1.10 Conductors and plasmas exhibit anisotropic and birefringent behavior when they are in the
presence of an external magnetic field. The equation of motion of conduction electrons in
a constant external magnetic field is mv̇ = e(E + v × B)−mγv, with the collisional term
included. Assume the magnetic field is in the z-direction, B = ẑB, and that E = x̂Ex + ŷEy
and v = x̂vx + ŷvy.

a. Show that in component form, the above equations of motion read:

v̇x = e
m
Ex +ωBvy − γvx

v̇y = e
m
Ey −ωBvx − γvy

where ωB = eBm = (cyclotron frequency)

What is the cyclotron frequency in Hz for electrons in the Earth’s magnetic field B =
0.4 gauss = 0.4×10−4 Tesla? [Ans. 1.12 MHz.]

b. To solve this system, work with the combinations vx ± jvy. Assuming harmonic time-
dependence, show that the solution is:

vx ± jvy =
e
m
(Ex ± jEy)

γ+ j(ω±ωB)
c. Define the induced currents as J = Nev. Show that:

Jx ± jJy = σ±(ω)(Ex ± jEy), where σ±(ω)= γσ0

γ+ j(ω±ωB)

where σ0 = Ne
2

mγ
is the dc value of the conductivity.
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d. Show that the t-domain version of part (c) is:

Jx(t)±jJy(t)=
∫ t

0
σ±(t − t′)

(
Ex(t′)±jEy(t′)

)
dt′

where σ±(t)= γσ0e−γte∓jωBtu(t) is the inverse Fourier transform of σ±(ω) and
u(t) is the unit-step function.

e. Rewrite part (d) in component form:

Jx(t) =
∫ t

0

[
σxx(t − t′)Ex(t′)+σxy(t − t′)Ey(t′)

]
dt′

Jy(t) =
∫ t

0

[
σyx(t − t′)Ex(t′)+σyy(t − t′)Ey(t′)

]
dt′

and identify the quantities σxx(t),σxy(t),σyx(t),σyy(t).

f. Evaluate part (e) in the special case Ex(t)= Exu(t) and Ey(t)= Eyu(t), where Ex, Ey
are constants, and show that after a long time the steady-state version of part (e) will
be:

Jx = σ0
Ex + bEy

1+ b2

Jy = σ0
Ey − bEx

1+ b2

where b =ωB/γ. If the conductor has finite extent in the y-direction, as shown above,
then no steady current can flow in this direction, Jy = 0. This implies that if an electric
field is applied in the x-direction, an electric field will develop across the y-ends of the
conductor, Ey = bEx. The conduction charges will tend to accumulate either on the
right or the left side of the conductor, depending on the sign of b, which depends on
the sign of the electric charge e. This is the Hall effect and is used to determine the
sign of the conduction charges in semiconductors, e.g., positive holes for p-type, or
negative electrons for n-type.

What is the numerical value ofb for electrons in copper ifB is 1 gauss? [Ans. 4.3×10−7.]

g. For a collisionless plasma (γ = 0), show that its dielectric behavior is determined from
Dx ± jDy = ε±(ω)(Ex ± jEy), where

ε±(ω)= ε0

(
1− ω2

p

ω(ω±ωB)

)

whereωp is the plasma frequency. Thus, the plasma exhibits birefringence.

1.11 This problem deals with various properties of the Kramers-Kronig dispersion relations for
the electric susceptibility, given by Eq. (1.17.8).

a. Using the symmetry properties χr(ω)= χr(−ω) and χi(ω)= −χi(−ω), show that
(1.17.8) can be written in the folded form of Eq. (1.17.9).

b. Using the definition of principal-value integrals, show the following integral:

P
∫∞

0

dω′

ω′2 −ω2
= 0 (1.19.3)

Hint : You may use the following indefinite integral:

∫
dx

a2 − x2
= 1

2a
ln

∣∣∣∣a+ xa− x
∣∣∣∣.
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c. Using Eq. (1.19.3), show that the relations (1.17.9) may be rewritten as ordinary inte-
grals (without the P instruction) as follows:

χr(ω) = 2

π

∫ ∞
0

ω′χi(ω′)−ωχi(ω)
ω′2 −ω2

dω′

χi(ω) = − 2

π

∫ ∞
0

ωχr(ω′)−ωχr(ω)
ω′2 −ω2

dω′
(1.19.4)

Hint : You will need to argue that the integrands have no singularity atω′ =ω.

d. For a simple oscillator model of dielectric polarization, the susceptibility is given by:

χ(ω) = χr(ω)−jχi(ω)=
ω2
p

ω2
0 −ω2 + jγω

= ω2
p(ω

2
0 −ω2)

(ω2
0 −ω2)2+γ2ω2

− j γωω2
p

(ω2
0 −ω2)2+γ2ω2

(1.19.5)

Show that for this model the quantitiesχr(ω) andχi(ω) satisfy the modified Kramers-
Kronig relationships (1.19.4). Hint : You may use the following definite integrals, for
which you may assume that 0 < γ < 2ω0 :

2

π

∫ ∞
0

dx
(ω2

0 − x2)2+γ2x2
= 1

γω2
0
,

2

π

∫ ∞
0

x2dx
(ω2

0 − x2)2+γ2x2
= 1

γ

Indeed, show that these integrals may be reduced to the following ones, which can be
found in standard tables of integrals:

2

π

∫ ∞
0

dy
1− 2y2 cosθ+ y4

= 2

π

∫ ∞
0

y2dy
1− 2y2 cosθ+ y4

= 1√
2(1− cosθ)

where sin(θ/2)= γ/(2ω0).

e. Consider the limit of Eq. (1.19.5) as γ → 0. Show that in this case the functions χr,χi
are given as follows, and that they still satisfy the Kramers-Kronig relations:

χr(ω)= P ω2
p

ω0 −ω +P ω2
p

ω0 +ω , χi(ω)=
πω2

p

2ω0

[
δ(ω−ω0)−δ(ω+ω0)

]

1.12 Derive the Kramers-Kronig relationship of Eq. (1.17.7) by starting with the causality condi-
tion χ(t)u(−t)= 0 and translating it to the frequency domain, that is, expressing it as the
convolution of the Fourier transforms of χ(t) and u(−t).

1.13 An isotropic homogeneous lossless dielectric medium is moving with uniform velocity v with
respect to a fixed coordinate frame S. In the frame S′ moving with dielectric, the constitutive
relations are assumed to be the usual ones, that is, D ′ = εE ′ and B ′ = μH ′. Using the Lorentz
transformations given in Eq. (H.30) of Appendix H, show that the constitutive relations take
the following form in the fixed frame S:

D = εE+ av×(H− εv× E) , B = μH− av×(E+ μv×H) , a = εμ− ε0μ0

1− εμv2


