Figure 6.6.8 Four-state encoder for 8-PSK in systematic form with feedback,
WD) =1+ D% W(D)y=D, h*(D)=0.

Figure 6.6.8 shows the diagram of this encoder, with h%(D) providing the feedback con-
nections, and the remaining polynomials specifying connection of the input bit lines 1o
the various adders. The state variables are the contents of the memory cells, and it can be
seen that any state may transition in one step to two next-states. The modulator input bits
b3 and b; are defined directly by the two message bits. The subset specification is pro-
vided by (b1, b2). and this generation process has memory on only one of the input bits.

Usually, the polynomials k' (D) are specified in octal notation for compactness and
would be #° = 54, k' = 23 and #* = Og in this case.

In Tables 6.12 and 6.13, information is summarized for best codes for 8-PSK and
QAM with § = 4 to § = 256 states. The data are taken from [4] and [58].

TABLE 6.12 CODE SUMMARY FOR CODED 8-PSK

v k& Ay Wi K (D) a‘f-/E,, ACG. dB

2 1 5 2 — 4.0 3.0
3 2 11 2 4 4.58 3o
4 2 23 4 16 5.17 4.1
5 2 45 16 34 5.76 1.6
6 2 105 36 74 6.00 438
7 2 203 14 16 6.34 5.0
8 2 405 250 176 6.93 54

ACG is relative 10 uncoded 4-PSK.

TABLE 6.13 CODE SUMMARY FOR CODED 16-QAM

vk Wy Ay Dy d}/Es  ACG, dB

21 5 2 — 480 4.4
302 f 2 4 600 5.3
4 2 23 4 6 720 6.]
5 2 45 16 ¥ 720 6.1
6 2 105 36 % 840 6.8
7 2 Mm 14 16 960 7.4
8 2 405 250 176 9.60 7.4

ACG is relative to uncoded 8-PSK.

Codes are also optimal for higher throughput cases by using addi-
tional uncoded bits.

630 Trellis Codes  Chap. 6



x,y
n
N
— e,
b

+ (s

1

ot

Figure 6.6.9 Sixieen-state encoder for QAM constellations. #%(D) = 233,
h' = dg, h% = 163, other &' = 0.

To illustrate the use of these tables, Figure 6.6.9 shows the optimal 16-state encoder
for QAM. Notice that two of the input bits now infiuence the state vector. The asymptotic
coding gain is 6.1 dB over an uncoded technique having the same spectral efficiency,
8-PSK. :

TCM for 16-PSK constellations has been studied as a means of achieving higher
spectral efficiency with constant envelope transmission. Due to the special growth of
squared distance within subsets when 16-PSK is partitioned, the optimal codes differ
from those found for 8-PSK. A summary of these codes is found in [4} and [59].

In the matter of power spectrum, we earlier suggested that the power spectrum is
unchanged if we simply enlarge the modulator constellation and keep the dimensionality
per bit as it would be for an uncoded system. Biglieri [60] has shown in fact that for
Ungerboeck-style TCM, that is, set-partitioned constellations preceded by convolutional
encoders, the power spectrum is in fact unaliered. This clearly has much to do with the
symmetries of the signaling process.

Slightly better opportunities for good treflis codes exist when the constelation is
a multidimensional constellation, say a lattice in N -dimensiona) space [58) or an L-fold
product of M-PSK designs [61]. The conceptual nature of the codes is similar: t bits
enter the encoder per trellis level, and some bits become part of the state vector while
others are uncoded. The encoder produces a signal point from an N-dimensional con-
stellation.'’ To correctly assess a given technique, particularly against two-dimensional
coded modulation, we must measure the information throughput per signal space dimen-
sion, and also calculate free distance in terms of energy per information bit. It is also
important to attempt o measure the decoder complexity fairly. One way of doing so is to

13This may be realized by sending multiple two-dimensional symbols perhaps.
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count the number of decoder branches per decoded bit, without regard to dimensionality,
for this registers the number of metric updates, metric comparisons, and the like, per
information bit in the decoder. Interested readers are referered to {58] for precise details.

One benefit of higher-dimensional constellations is ease in obtaining rotational
invariance, a property that allows the carrier phase synchronization process to leave
so-called phase ambiguities, for example, the acquired phase could be in-phase with
that of the modulator or 180 degrees out-of-phase. Rotational invariance also aids in
fast reacquisition once noise or jitter has caused the carrier synchronization loop to
momentarily lose lock. The requirement is that for any signal pattern producible by the
TCM system it must be true that a rotated version of this sequence is also a valid code
sequence. Differential encoding ultimately is required to resolve the ambiguity,

Wei [62] presents trellis codes for two or more dimensions that achieve 0/90/1807270
degree rotational invariance in carrier phase synchronization. It is typically the case that
attaining rotational invariance requires some sacrifice in coding gain, at a given state
complexity. One case where this proved not to be true is the case of eight states with
coded QAM. Wei was able to produce a rotationally invariant code with the same free
distance as the best Ungerboeck 2-D code; the encoder is nonlinear, that is, it contains
AND gates in addition to mod-2 adders and delay cells. This coding scheme ultimately
became part of a CCITT standar. V.32 for high-speed voice-band modems. Figure 6.6.10
presents the encoder and constellation in this standard.

Figure 6.6.11 shows the concept behind a four-dimensional, 16-state TCM scheme
developed by Wei [62], mapping 12 input bits onto a constellation from Z* having 21° =
8192 points. The system would have the same spectral efficiency as uncoded 64-QAM (6
bits/two-dimensional symbol), yet yields several décibels of coding gain over 64-QAM.
Calderbank and Sloane [63] discuss a similar eight-dimensional trellis code. Pietrobon
et al. (6] discuss rotationally invariant L-dimensional treilis codes for PSK and show
that higher dimensional signal sets are useful in obtaining this invariance propernty.

Performance .evaluation of trellis codes for the Gaussian channel follows similar
lines as that done for binary convolutional codes coupled with binary modulation, dis-
cussed earlier. There is, however, one important difference related to the general lack
of the complete invariance of performance to transmitted sequence that is present in the
binary convolutional code case. With trellis codes, it may turn out that some transmit-
ted sequences in signal space are more prone to emor than others, that is, have closer
nearest-neighbor sequences, or the multiplicities of neighbors differ. It turns out that, at
least with regard to free distance, Ungerboeck-style codes (binary convolutional codes
coupled to a set partitioned constellation) have the usual invariance property, and any
trellis path can be adopted as the reference for free-distance analysis. In general, precise
bounding of the error probability must resort to a generalized transfer function bounding
approach, which correctly enumerates both nearest neighbor sequences in a trellis code
design, as well as numbers of bit errors on these error events. Zehavi and Wolf [64] in-
troduced this technique, and Benedetto [65] has summarized the performance evaluation
issue in detail, analyzing different symmetry properties of trellis code designs.

Representing state-of-the art in trellis coding for the bandlimited Gaussian chann.
is the V.34 modem standard, called V.Fast prior to standardization. The method is
described in [66] and invokes numerous advanced features, including maultidimensional
trellis-coded modulation, Other items include constellation shaping, transmitter/receive,
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Figure 6.6.11 Wel s 16-state four-dimensional trellis code mapping 12 bits
to 8192 points in Z*.

“handshaking” for optimization, and transmitter pre-coding for receiver equalization of
dispersive channel effects. On certain voice-band channels, this standard allows trans-
mission at a rate of 28.8 kbps. Automatic fallback to lower speeds is accompl:shed on
degraded channels.

Finally, readers are referred to the work of Fomey [58, 67] which greatly unifies
trellis-coded modulation theory. Lately, more general algebraic systems of rings and
groups have been invoked to design, analyze, and unify TCM systems.

6.6.3 Trellis Codes for Fading Channels

We have recently emphasized the importance of designing codes so that free Euclidean
distance is maximized. This is appropriate for the nonfading, band-limited Gaussian
channel. On the other hand, when channel fading is introduced _and symbol interleaving
and deinterleaving are employed to render the channel effectively memoryless, the design
reverts tQ a somewhat more traditional objective, maximizing Hamming symbol distance.
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We will study the case of Rayleigh fading in detail and consider only the case of coherent
detection with perfect side information on channel phase and gain. This is admittedly
problematic, but it is indicative of design rules for, say, differentially coherent detection
without side information.

We begin by writing a union bound for the node error probability in a trellis

decoder:
P <Y Pai, (6.6.7)
iel
where i indexes an error event in the incorrect set /. We can ultimately perform some
form of counting of error events to determine the number in various classes and now
focus on the two-codeword error probability.
Given any M-PSK/M-QAM signal sequences x; (in complex form), received com-
plex data r, and inown channel fading amplitude a, the appropriate decoder metric is a
weighted correlation:
A% 18) =Y a;Re(x;;r!} +ajxgx],. (6.6.8)
i
This derives from writing the likelihood function conditioned upon a given test sequence
and known channel amplitudes, as discussed in Chapter 4. Note that, given a known
vector of channel gains, the metric is a Gaussian random variable, and it is not difficult
10 show that the two-codeword probability of emror is

12
Pyija) = (2E’ Zazdl’) , (6.6.9)

which involves an amplitude-weighted squared Euclidean distance between sequences.
If we invoke an exponential bound on the Q-function, we obiain

| (%)
Py(ila) = Ee /

== n “(8e4)

(6.6.10)

To determine the upper bound on node error probability, we weight the conditional error
probability in (6.6.10) by the p.d.f. for the fading and then integrate to obtain the two-
codeword probability P,(i). By the perfect interleaving assumption, these amplitudes
are mdependent Rayleigh random variables:

f@y=[]2ae. (6.6.11)
J
Doing this calculation for each event i and then summing as in (6.6.7) gives

PesZﬂ(

Notice first that the dependence on E, /Ny is non-exponential; we have seen this routinely

(6.6.12)
2
~.,) 24l
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on the Rayleigh channel. A simpler upper bound, most accurate at high SNR, is

1
P, < Z[‘[@)—d{ (6.6.13)
P No J i

Two things should be noted from this formulation. First, we pick up an additional
exponent on £y /Ng for every unit of symbol Hamming distance between sequences. This
translates to the fact that the effective diversity order ebtained for a two-sequence test
is equivalent to the symbol Hamming distance. (Diversity order is the effective number
of independent propagation channels obtained in time, frequency, or space diversity
transmission systems, and this number represents the slope of error probability versus
SNR on a log-log display.) At high SNR, it is crucial that this diversity order be
maximized over all possible error events. Subsequent to this, we should design codes so
that the product of squared Euclidean distances is maximal.

In general, codes that emerge as good for the Rayleigh fading channel are different
from the good AWGN channel codes because of the differing optimization criterion. In
particular, AWGN codes often have a large parallel transition multiplicity, and if any
such parallel transitions exists, the minimum Hamming symbol distance is 1, leaving the

- code with no effective diversity. Equivalently, a single badly faded symbol is enough to
cause a decoding error. A simple case in point is that of coded 8-PSK. The best 4-state
AWGN code was illustrated in Figure 6.6.4 and possesses parallel transitions. A better
4-state code for the Rayleigh channel is shown in Figure 6.6.12 [68, 69]; notice the

- branching structure is typical of good binary convolutional codes with R = § and four
states. The minimum symbol Hamming distance is 2 for this code (there are multiple
occurrences of these), so the coding scheme has twofold diversity, assuming once again
nearly perfect interleaving is achieved. To estimate the node error probability, we can
dispense with error events having 3 or greater symbol distance in the trellis and itemize
the product distance on all the distance-2 events to obtain

1 1
Fer (kE}/No)* Z ]J—l %

_ C
"~ (kEp/No)?'

(6.6.14)

again pointing to second-order diversity. The coding gain of this simple 4-state code is

Figure 6.6.12 Trellis code for
sending 2 bits/interval using 8-PSK.
Minimum Hamming distance-is 2,
which is diversity order with perfect
interleaving.

636 Trellis Codes  Chap. 6



very large (on the order of 20 decibels at P, = 10™*), illustrating the immense payoff
that coding may produce on fading channels.

Bigger trellises can, of course, achieve larger free Hamming distance. Another
alternative that has been intoduced by Divsalar and Simon {69, 70) is “mulitiple trellis
coded modulation,” wherein more than one modulator symbol is assigned per branch.
For example, we could view the constellation as pairs of 8-PSK symbols, giving 64
candidates. This can be set partitioned so that Hamming distance 2 is obtained on
parallel transitions in the trellis, offering dual-diversity behavior. Interested readers are
referred to the performance analysis and design discussion found in {69, 70]. Ho and
Fung [71] examine the effect of time-correlated fading (or imperfect interleaving) on the
performance of trellis codes on fading channels. Sundberg and Seshadri [72] provide a
fine overview of coding for fading channels.

6.7 CONTINUOUS-PHASE MODULATION (CODING)

Continuous-phase modulation (CPM) has become a popular transmission technique in the
last decade, primarily owing to the fact that the transmitted signal possesses a constant
envelope (thus being suitable for nonlinear amplification) and low spectral sidelobes
intrinsic to the modulation process. The reader is referred to [73] for the definitive
treatment of this material. A more compact summary is available in Anderson and
Sundberg’s tutorial article [74).

Although the adopted name includes modulation, the memory of the signal con-
struction makes the discussion more appropriate for our discussion of coding, and indeed
the usual cases of interest exhibit a finite-state trellis description for which Viterbi de-
coding forms the optimal decoder. As we proceed into the discussion, we will suggest
the proper way to view CPM is as a trellis code combined with a memoryless modula-
tor, where the modulator alphabet is rather large. This viewpoint was first advanced by
Rimoidi [75].

6.7.1 Signal Description

To begin, we write the transmitted CPM signal as a phase-modulated sinusoid

2E,\'7
s(t,u) = ( T:) cos [wet + ¢, u) + Pyl 6.7.1)

5

where W = (ug, 4y, ..., u;,...) is a semiinfinite M-ary data sequence selected in equi-
probable, independent fashion from the symmetric set {£1,43,..., +(M — 1)}. The
energy expended per symbol interval T; is E;,'* us may be verified by integration of the
square of the signal in (6.7.1), and ¢y is an initial phase angle of the carrier at time zero.

Only the phase function ¢(r, u) is of real interest in (6.7.1), for it conveys the
message sequence, and the transmitted signal is exactly specified once other fixed pa-
rameters are known. The nature of evolution of this phase function defines a particular
CPM scheme.

1 Again, this technically requires that either w, = 227 /T, or @ 3> n2n/T,.
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We define the phase function to be a superposition of responses produced by each
symbol:

$(t,u) =2mh Y ujqlt — jTo), (6.7.2)
j=0

where ¢(t) is a phase shaping pulse and h is the modulation index. Thus, by definition,
the phase modulation ¢(¢, u) is a linear function of the message. By convention, we
choose the modulation to be causal, that is, g(¢t) = 0, ¢t < 0, and let the final value be
g{t) = % t > LT,, where L is the number of symbol intervals when a given data symbol
exerts a changing influence on the cumulative phase.

From (6.7.2) and the preceding boundary conditions, we see that over the interval
[iTs, (j + L)T;), a given data symbol, ;, induces a net phase change of uj2:rh(%) =
u;hm radians, and this induced phase modulation persists over time in CPM, by virtue
of (6.7.2). Since each symbol’s eventual phase influence is proportional through & to
the data symbol, it becomes obvious that & is a modulation index, just as in analog
angle modulation schemes. Because of implementation considerations and because a
finite-state trellis follows, as we will see, h is assumed to be rational; that is, h = p/r,
with both p and r pormially small, relatively prime integers. Furthermore, for reasons of
spectrum economy, it will be the usual case that h < 3.

The phase shaping pulse, ¢(t), may be related to the frequency-shaping pulse,
g(t), by

!
q(r)=/ g(x)dx, (6.1.3)
0

and we may therefore view CPM as either frequency or phase modulation.
A CPM scheme is completely defined by #, M, and either ¢(t) or g(¢). Two fam-
ilies of CPM schemes will be covered here and are known as L-REC (for rectangular):

1

g =1{3T O0st=LT, (6.7 4a)
0, else,
and L-RC (for raised cosine):'*
} 1 2t 0<1<LT
g =120, | T\ /| =P =Ll (6.7.4b)
0, else.

Other pulse shapes are possible, but L-REC and L-RC bracket the range of options and
exhibit the essential properties obtainable with other choices. Figure 6.7.1 illustrates
the two generic frequency pulse shapes and the corresponding phase pulse shapes. The
nomenclature, however, derives from the shape of the frequency puise.

A rather well known special case of CPM is called MSK, for minimum shift keying.
It is equivalent to the use of 1-REC pulse shaping and adoption of h = % 1-REC CPM is
equivalent to standard frequency-shift-keying modulation, and with b = % the frequency

'*Here raiscd-cosine refers 10 a time-domain characteristic, not a frequency-domain shape.
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Figure 6.7.1 Frequency pulses for CPM. (a} L-REC; (b) L-RC.

shift (:i:%T,) is the minimum such that the two modulated signals are orthogonal over
one symbol interval, hence the name.

As an aside, we may incorporate standard DPSK modulation into the CPM frame-
work if we allow discontinuous phase. We obtain M-DPSK by choosing ¢(r) to be the
step function with height % and h = ,—“; This would mean that the new phase in each
modulation interval changes by tm /M. £3n/M, ... +(M - Da/M. (Actually, what
we have implemented is M-DPSK with an additional phase rotation of x /M radians in
each interval, but this does not materially affect the signal's error probability or power
spectrum.) It is worth noting that this 7 /4-QPSK technique has been adopted for the
North American TDMA cellular standard known as 1S-54.

A helpful way of visualizing CPM is provided by the phase tree, the set of all
phase paths ¢(7, u) commencing with some common initial conditions at t = 0. Because
a new M -ary symbol begins to influence the phase trajectory every T, seconds, the phase
tree exhibits M -way branching, and over N symbol intervals, there are MY distinct phase
paths or codewords.'® In Figure 6.7.2 we show the phase tree for binary 1-REC (Fig-
ure 6.7.2a), binary 3-RC (Figure 6.7.2b), and quaternary (M = 4) 3-RC (Figure 6.7.2¢)
cases for four levels of the tree. Note that the phase axis is scaled in terms of 27k, so
the trees shown may be employed for any modulation index. Of course, phase angles are
rendered modulo-2r, and it should be remembered that two phase paths that appear very
dissimilar on a planar presentation may in ‘fact be identical as modulo-2 trajectories
~and thus produce identical signals. This fact is made more clear by wrapping the planar
graphs shown in Figure 6.7.2 onto a cylinder, as shown in Figure 6.7.3. In sa doing, we
‘must choose a modulation index A, for this controls the stretcir factor in the wrapping of
the planar tree onto a cylinder.

" Two properties of CPM are readily apparent in either the phase tree or phase
cylinder. First, any specific phase trajectory is relatively smooth, say compared to the
phase process produced by a PSK modulator. In particular, the phase is everywhere
continuous [by definition of ¢(¢)], and for appropriate pulse shaping, derivatives of the
phase process may be continuous as well. Baker {76] has shown that the asymptotic rate
of decay of spectral sidelobes in digital FM (or PM) signaling is related to the number of
continuous derivatives of the pulse ¢ (¢). That is, if m is the smallest order of derivative
that is discontinuous, meaning that m is the smaliest value for which d"g(t)/dt™ # 0
for some time point, then the power spectrum behaves for large frequency separation

!$This is perhaps the first encounter with codewords that are in fact complicated waveform pattems.
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Figure 6.7.2a Phase tree for 1-REC and M = 2.

from the carrier frequency as O (f~2"2); that is,

G(f) = If = fl>0. (6.7.5)

K
| f = fo |t

In the case of L-REC pulse shaping, Figure 6.7.2 shows that although the function
q(t) is continuous the first-derivative is not everywhere continuous; hence m = 1 for this
pulse, and the asymptotic rate of decay of spectral sidelobes for all such CPM schemes
is therefore of order |f — f.|™* for positive frequencies. For L-RC signaling, first ‘and
second derivatives of ¢(r) are continuous at all points of time, but the third derivative is
not at the two points ¢ = 0 and ¢ = LT; (Exercise 6.7.2). Therefore, power spectra for
M-ary L-RC modulation. decrease as the eighth power of frequency for large separation
from the carmrier. Too much should not be made of this, however, for this consideration
reveals little about the distribution of the bulk of the signal power. More will be said
about this shortly.

The second key observation regarding the phase tree is that two phase paths that
split at ¢ = 0 (or any symbol boundary for that matter), due to distinct data symbols,
may not remerge (and stay remerged) until after L, + 1 symbol intervals have elapsed.
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Figure 6.7.2b Phase tree for 3-RC and M = 2,

Therefore, the parameter L plays a key role of memory order for CPM schemes. - With
the 1-REC scheme, phase paths diverging at + = 0 may merge again after two symbol
intervals, while for 3-RC, the quickest merger happens after four intervals.!” The impli-
cation of this CPM property lies in detection of the message: it is intuitively clear that an
optimal decoder should utilize an interval of the received waveform r(t) with duration at
least (L + 1)T, seconds to decide any given data symbol and that the energy associated
with this span of time is useful to the detection of a given symbol. This principle is
germane to any signaling technique with memory.

6.7.2 State Representation

The phase process ¢(t, u) is cumulative on message symbols and exhibits infinite mem-
ory, even though the frequency pulse lasts only LT, seconds. In studying the phase
process over the interval n7, <r < (n + 1}T,, we observe that the current symbol u,,

?Quicker mergers may hap;;cn for certain modulation indexes, the weak modulation indexes, but these
are to be generally avoided, as discussed later.
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Figure 6.7.2c Phase tree for 3-RC and M = 4.

as well as those symbols indexed back to n + 1 — L, will exert a changing influence on
¢(t, u), while symbols prior to u,4,-; have produced their final phase influence, u;hx.
Hence, we may conveniently separate the total phase of (6.7.1) into two components:

"

n—L
$.w=(po+ Y whr)+2nh Y wqt-nT),  al, <1<+ DT,

j=0 f=n—L+1
n
=6,+2th Y uqG-nT), nT, <t<(n+ DT,
j=n—L+1

(6.7.6)

642 Trellis Codes  Chap. 6



Figure 6.7.3 Phase trajectories drawn on cylinder, Not all paths shown.

This suggests a state-variable description of the CPM signal: by specifying the cumula-
tive phase term 6, and the data vector [#,—s . Un—r+1s - .-, #,], We may exactly represent
the CPM signal over [aT;, (n + 1)T;] using (6.7.6) in (6.7.1). Furthermore, we can see
by inspection how to update the state under the influence of message inputs. This rep-
resentation would not be noteworthy unless we observe that for A = p/r the cumulative
phase term in (6.7.6) may take on exactly r phase positions at each value of n, relative
to the initial phase. This follows from the fact that

n—L p n-L )
6, =1 hr i fmod 2r = | — u; | mod2. 6.7.7)
= (i = (P (
The latter sum, taken modulo-2, is contained in {0, £2n/r, ..., £(r — 1)1 /r} for an even
number of summands or in {*x/r, ..., £(r — D)z /r} for an odd number of summands,
so in either case r phase positions exist. A technical nuisance is that if p is odd the
r phase positions are the same set at each time, while if p is even, the r phases cycle
between two r-ary sets. The latter is tantamount to a time-varying state description.

To summarize, a finite-state description for the CPM modulator is provided by
specifying the vector o, = (6, Uy, ..., Ua-r4+1). Since this vector may assume one of
rM*~! values, we.say that the state complexity of a given CPM scheme is § = rMLt~",
Notice that this depends only on A, M, and L, and not the particular nature of the
shaping pulse. Naturally, a finite-state trellis description follows, depicting all possible
state transitions of a CPM modulator.

The updating of the state vector is specified by rules for determining the new
cumulative phase component and the new data vector compenent. These are

8n+| — 9" + hﬂH"_L.H (6-7-83)
and \
Wogy = (Up  Up_ty oo UnoLg1)s . (6.7.8b)

which is merely a right shift of u,, with the most recent data symbol u, preaffixed.
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It should also be apparent that the state specified allows a complete description of
the signal waveform in any given interval, since the state, together with knowledge of a
new input symbol, provides all the information needed to compute s(z, u) through (6.7.1).
The output equation is not so simple now as in the case of, say, trellis-coded PSK, but
can certainly be expressed as

¢, u) = f(t, 0p. up), (6.7.9)

producing only a finite number of possible phase trajectories over any symbol interval.
In particular, the number of states is § = r M. ~!, and each state produces M transitions
10 next states, so the number of distinct signal trajectories in any one interval is rM’.
(These are, in fact, distinct signal trajectories, as contrasted with the case of trellis coding
with a memoryless modulator, wherein the same modulator signal may be produced with
several state transitions.)

Example 6.25 State Description for Binary, 2-REC Signal

Let there be M = 2 symbols possible at each symbol time, and let 2-REC be the frequency
pulse shape. Thus, the phase tree exhibits piecewise-linear phase segments having slopes
hn/T;.0, and — hn/T;. With h = 3, the number of phase states is 3, and with L = 2,
the total number of states is 3-2@=1 = 6. In Figure 6.7.4 we show the trellis form of the
state-transition diagram. Note that states are labeled with a cumulative phase component
and a data component, the latter a scalar variable in this case. For example, if the modulator
state is 0, = (275/3. +1) and the next input is a —1 symbol, then the cumulative phase
entry becomes 4x/3 radians (adding the contribution of the previous <+ symbol into the
cumulative phase), and the next data state is —1,

3)

+1 ] +1
+1
© 1 22 (42.1)
! 3
+1 +1
e
@ On = (85, Upy)
-1
- - 2n _
(0,-1) fo— (Z. 1)
-1
-1 [ =1

Figure 674 State transition diagram for 2-REC, h = §, M =2
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- 6.7.3 Modulator Implementations

CPM modulators may be implemented in several forms. The first is suggested by the
definition of the waveform: implement phase modulation with a baseband, pulse-shaped
input to the modulator, and scale the phase modulation index appropriately. Equivalently,
we could fashion a frequency modulator and excite it by a superposition of frequency
pulses. By definition, use of a single oscillator with frequency modulation supplies
the continuous-phase property, and pulse shaping in the form of 'g{() provides exira
smoothness in the phase if desired. This is the standard means of implementing FSK,
with a 1-REC pulse shape. The only possible deficiency of this technique is lack of
precise control of the modulation index # under the influence of aging of components,
temperature effects, and the like. It is not absolutely critical that the modulation index
be exactly its prescribed value, say h = %. but if it is significantly different, then the
receiver designed for the nominal index may be significantly mismatched. The power
spectrum will be slightly different than expected as well,

A second implementation is shown in Figure 6.7.5, derived from expanding (6.7.1)
into quadrature form. We can employ quadrature modulation of the carier by the sine
and cosine of the phase function ¢(, u), employing a table-lookup process to fetch the
desired quadrature waveforms. An alternative provides a discrete-time representation of
the N = M! generic phase progressions, modifying these by the desired phase offset 6,
in the table-lookup process. The time discretization is certainly a design issue, but eight
samples per T;-second interval are probably adequate, particularly with filter smoothing
prior to modulation. The advantage of this implementation is that the phase increments
are carefully controlled and drift of the modulation index cannot occur. The reader is
referred to Maseng (77] for further discussion of this implementation.

cos [ (¢, u)}
Up Function €OS Wl
GeneratOf sin mct ° S(t' u)
-sin {¢ {t, u)]

Figure 6.75 Quadrature modulation realization of CPM.

6.7.4 Description of CPM as Memoryless Modulation
Preceded by Coding

Given our previous discussion, it becomes clear that one way of visualizing the CPM
signaling process is as the cascade of a section having memory and a memoryless mod-
ulator or signal generator. That is, the state equation subsumes all the essential memory
of the modulation process and defines the output signal as soon as the new input symbol
is specified. ‘
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In systems with L = |, the only memory present in the modulation is the cumulative
phase term, which enforces the continuous-phase property. In such cases the state of the
modulalor is

Onti = 6nyy =68, + hmu,, modulo 2w, (6.7.10)

The output signal is clearly only dependent on o, and u,, and this leads to a realization
of the modulator in the form shown in Figure 6.7.6. The modulator has M inputs at any
given time, where again r is the denominator of 4, and in response produces one of Mr
waveforms over the next modulation interval. It should be emphasized that the standard
CPM modulator would be viewed as having M possible inputs at each interval, whereas
our alternative view allows a larger number; this is no inconsisiency, for given a certain
prehistory, only M possible waveforms are possible; a finite-state encoder enforces the
CPM constraints. It is also worth noting that the multiplicity r stems from a phase
rotation of the basic set of M“~! waveforms. Thus, only a relatively small set of basic
waveforms must be synthesized.

{Continuous-phase

Encoder)
Finite-state Xn Memoryless
u R . — s(t, u)
. Machine \ Modulator

M-ary (rML"1 States) rML-ary

Figure 6.7.6 Decomposition of CPM into a unit with memory and a unit
without memory. After Rimoldi, [75].

Generalizing this viewpoint, we can think of the CPM process as a memoryless
modulation preceded by a low-rate digital encoder. The latter accepts log, M bits per
symbol interval and selects a symbol from a modulator set of size r ML symbols. Thus,
in classical terms the encoder’s rate is

log M

= Togt M5 bits/modulator input bit. (6.7.11)

Thus, for 4-ary 3-RC modulation with & = 1, the apparent rate is R = =3

The low rate is precisely a result of the desired phase smoothness constraints.
Consideration of merely energy efficiency would suggest that expansion of the modulator
set by a small factor is adequate, as achieved in trellis coding with expanded signal
constellations [4]. Achieving high spectral efficiency with the constant envelope property,
however, requires larger set expansion.

Rimoldi [78] has referred to this representaion of CPM as a cascade of a part having
memory [a continous phase encoder (CPE)] and a part that is memoryless [memoryiess
modulator (MM)]. This decomposition is more than idle thought; recently it has been
shown (78, 79] that such a view opens the way to optimizing additional trellis coding
that might be utilized, whereas when memory is left in the modulator, it is difficult to
directly optimize codes with a desired number of receiver trellis states,
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6.7.5 Power Spectra of CPM Modulation

CPM is a nonlinear digital modulation technique whose spectral analysis is rather com-
plicated. The modulation process is a Markov process, when h is a rational number,
so in principle the methods of Chapter 3 can be invoked to determine the power spec-
trum. However, the state complexity may be large, and the numerical accuracy of this
procedure may be poor.

More direct attacks are described in [80] for the case of 1-REC modulation and in
[81] for general CPM. Both are based on determination of the autocorrelation function for
the complex envelope of the CPM signal. In general, the power spectrum may include
spectral lines, in addition to the continuum spectrum.

Some general remarks follow:

1. The power spectrum generally widens with increasing h, although the data led
shape changes. Spectral lines emerge in the power spectrum for integer-valued A,
although this is normally not a case of interest.

2. Use of small % is not a recipe for extremely bandwidth efficient communication,
despite the small values of Bgo. This is analogous to the early misunderstanding
of FM transmission, where it was conjectured that small frequency deviation could
compress bandwidth below that of the modulating signal. In fact, the small power
contained in the sidelobes of the signal is precisely where the information resides.

3. Smoothness of the CFM signal does indeed increase the rate of decay of spectral
sidelobes. This may be advantageous in multicarrier systems, in reducing adjacent
channel interference. However, one possible drawback to this increased sidelobe
decay is a wider spectral mainlobe. MSK is a case in point: the sidelobes decay as
|f = f.I%, rather than | f — f,|* for PSK/QPSK, but the mainlobe width for MSK
is 50% larger than that of QPSK at equal bit rate. Thus, the claims for improved
spectral efficiency of CPM must be judged carefully.

Figure 6.7.7 presents power spectra for binary CPFSK and binary 3-RC, with h = 1

3
and h = 3.

6.7.6 Coherent Decoding of CPM

We now consider the optimal decoding of continuous-phase modulation, under the as-
sumption that the signal is received by a nonfading, nondispersive channel, together with
additive white Gaussian noise. We further assume that the receiver has been able to de-
termine the received signal’s reference phase angle, ¢, so coherent detection is possible.
We seek the maximum likelihood sequence estimate for the data sequence u.

Our discussion in Chapter 2 immediately implies that the optimal receiver for
a sequence of length N symbols embedded in white Gaussian noise would correlate
the received waveform, r(f), against the M" possible signal trajectories and choose
that sequence producing the largest correlation. (Note that pure correlation without any
" additional bias terms follows from assumption of equiprobable message sequences and
the fact that each signal contains equal energy.) Correlation over an interval of length
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G(f), dB

Figure 6.7.7 Power spectra for
M=21REC,h=4%M=24,
I-REC. h = }; M =2,3-RC, h = }.
Note rapid decay of 3-RC spectrum.

NT,; seconds may be decomposed into a sum of N correlations performed over T;-second
intervals. Thus, the optimal receiver may be implemented as shown in Figure 6.7.8, wheré
we show a bank of analog symbol-duration correlators, each performing a correlation
with one of r M signals, coupled with a discrete-time processor that sums appropriate
outputs of the comelator bank to form global sequence correlations. The complexity of
this receiver still grows exponentially with blocklength ¥, however.

Because of the finite-state nature of the encoder, we may apply the principle of
optimality once again and use the Viterbi algorithm to perform sequence correlations
and avoid the complexity that grows exponentially with message length N. The Viterbi
receiver uses outputs of the comelator (or matched filter) bank as metrics for scoring
various trellis hypotheses. The trellis decoder has r ML ! states, as described previously,
and for each state performs an M-way add/compare/select operation to determine the
survivor state. Such a trellis decoder is little different from those we have seen earlier

Correlator ot MLSE
?fn:f Processor )
L1
r{t)y — Carrelations) _ (rM~1 States}) —u

( Decoder Branch Metrics
cos {ogh

Figure 6.78 Generic maximum likelihood decoder for continuous phase mod-
ulation,
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in the chapter; perhaps the notable complication here is that the number of fundamental
correlations needed to form metrics is larger in general for CPM, that is, rM*% versus,
say, only one for antipodal signaling of binary convolutionally coded sequences. Recall,
however, that many of these correlations are mere phase rotations of others, allowing
complexity reduction. An important engineering question is whether the number of
correlators can be reduced to a smaller state by approximating classes of waveforms by
single functions; this is akin to a quantization strategy.

The concept of free distance is important for decoding performance in CPM, just as
it was ‘in earlier cases for trellis codes. For deciding among arbitrary signals in AWGN,
the fundamental guantity of interest is the minimum L, distance between any pair of
signals to be considered. We define the free distance of a CPM scheme as the minimum
L; distance among all pairs of signal paths that are initially merged, then split in the
trelhs, and later remerged. For any two signals s,(¢) and s5;{r) that are unmerged from
nT; to (n + DT, the L, distance between them is

{(n+)T, " 2ES
di :f [s:46) = 5;(0] dr = - f(l — cos{Ad ()] dt, (6.7.12)
nT, §

where A@(r) is the phase difference function between the two signals. Technically, this
distance expression pertains under the assumption that there are either (1) an integral
number of cycles of the carrier frequency per symbol interval or, more typically, (2) the
number of carrier cycles per symbol is large.

It is a simple matter to determine the L, distance between two CPM signals
by (6.7.12) merely by following the phase difference trajectory. For certain coding
schemes having adequate symmetry, we have found it is sufficient to let any one se-
quence, typically the all-zeros sequence, be the reference point for calculation of dis-
tances to other sequences. Unfortunately, in the case of CPM this does not follow,
and some transmitted sequences have different distance sets to neighboring sequences.

For example, consider 1-REC signaling with & = L. The input sequence 100000 has

a neighboring sequence 0100000 that merges after :wo symbol intervals, with squared
distance df, = 2E,[1 — sin(hm}/hm ], as follows from (6.7.12). On the cther hand,
the input sequence 11000000 does not have a two-step error event for general hA. This
fact complicates determination of the free distance for a given CPM configuration, and
in essence all possible pair sequences must be considered by a trellis sweep on pair
states. Mulligan and Wilson [82] have reported a procedure for efficiently performing
this computation. In the case of uncoded CPM, since the distance function depends
only on phase difference, which in turn depends on the difference sequence between the
two messages, it is sufficient in searching for df to examine all difference sequences
obtained by placing one of 2M — 1 difference symbols in each position of the se-
quence.

In CPM, we are concerned with signal paths that split and remerge at some later
time. If we denote by u"’ and u'® two such information sequences, then it is readily
seen that the phase difference between the two signals will be

Ap() =2nh Y yq(t — jTy), (6.7.13)
j=0
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where y; = ' — "}z) is the symbol difference sequence. If M-ary transmission is
employed, the possible differences in each symbol position are {0, 2, +4, ..., +2M —
1), Two information sequences that differ over a span of N symbols, that is, y # 0 and
yn-1 # 0, may not merge is the signal sense due to phase memory. The earliest time
the signals may become equal (and stay equal or merged) is attime j =N — 1+ L, or
L — 1 intervals beyond the unmerged information span. Whether they do in fact merge
or not depends on the difference sequence y. In panicular, we require that the running
sum of the y; sequence depart from zero and return to zero for L — | additional intervals
to effect a state merger.

Example 6.26 Merger Events for Binary 3-RC

Consider the sequence u) = (1, -1, 1,1, 1,1,...) and w® = (-1, 1,1,1,1,1,...). The
corresponding difference sequence is

¥ =(2,-2,0,0,0,0,...) (6.7.14)

for which the running sum is 2, 2 -2 =0, 2-2+0 = 0,.... Thus, although the
information sequences merge after two steps, the additional memory implicit in 3-RC delays
the true signal merger until the end of the fourth symbol interval. Such may be seen in
Figure 6.7.9 as the quickest merger event. This merger event happens for any modulation
index / and is called an inevitable merger event. Other inevitable merger events are
specified by any difference sequence whose running sum becomes 0 and remains so. For
exampie, the difference sequence y = (2,2, -2, -2,0,0,...) provides a signal merge at
depth 67

4hn ] T |

3hn _
State

2hx |- Merger
at4T,

—4hn A 1 |
0 T 27, 37, 4T,

Time
{in Symbol Intervals)

Figure 6.7.% Shortest split-and-merge event for binary 3-RC (see darker curve).
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It may happen that for some modulation indexes merges occur that are not inevitable
merges, but occur because

n
whY vy =m2n,  m#O. (6.7.15)
j=0
In these cases the modulo-2r rendition of the phase makes it possible for sequences to
merge on the “‘backside” of the phase cylinder for certain 4. It may be that such merges

dominate the minimum distance, that is, induce smaller L; distance than inevitable merger
events and, in such cases, these modulation indexes are known as weak modulation indexes.

It is to be expected that the free distance of a CPM scheme wiil depend on M;
the modulation index h (which determines the rapidity of phase separations); the pulse
shape, ¢(¢); and on L. Figure 6.7.10 depicts the squared free distance normalized to
2E), as a function of  for 1-REC signaling with various choices of M. Figure 6.7.11
does the same for 3-RC signaling. in both we note an expected growth with distance
as the modulation index increases and then a kind of saturation effect wherein dis-
tance no longer grows. This is due to the modulo-27 rendition of phase angle. Se-
quences that appear to be widely separated on a planar drawing of the phase tree are
perhaps not separated widely in phase angle, giving small effective distance by (6.7.12).

10 Figure 6.7.10 Normalized free
h distance for 1-REC CPM versus #.
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10 Figure 6.7.11 Normalized free
distance for 3-RC CPM versus h.

It is also true that for different values of ~ the dominant (smallest distance) pair of
sequences changes. Typically, for small # the dominant distance event is the pair of
sequences 100000 and 010000, which lead to the quickest inevitabie merger of the signal
paths. In any case, the distance for this pair serves as a simply computed upper bound
on free distance.

Aulin [83] has empioyed transfer function bounding approaches to analyze the
decoded symbol error probability for optimal CPM decoders. This process is somewhat
analogous to that for convolutional codes, but requires a more careful averaging with
respect 1o choice of transmitted sequences.

6.7.7 Related Topics in CPM

A large amount of research has been directed at the problem of receiver simplification,
that is, providing alternatives to a Viterbi-type decoder with S = r MY~ states. Most of
this is summarized in the text of Anderson, Aulin, and Sundberg {73], but we provide a
capsule summary.

First. the fact that we are dealing with a frequency-modulated signal suggests
discriminator detection as a simple expedient. The structure of such a receiver is a chain
of bandpass filter/discriminator/low-pass filter, with' the low-pass filter sampled at the
symbol rate. If the pulse used has L = |, then decisions can be based on single samples:
otherwise, some sort of decision feedback is required to reconvert the instantaneous
frequency back to a symbol sequence. Since such receivers do not derive from decision-
theoretic bases, we must expect them to be somewhat suboptimal. Analysis of such
receivers is complicated by the nonlinearity of the discriminator, as is the case for any
FM demodulator. In particular, proper treatment of the click noise component is at best
approximate. Simmons and Wittke {84] have provided a treatment of the case of binary
I-REC, showing the dependence on prefilter bandwidth.
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A related suboptimal detector is motivated by the fact that information is conveyed
in the phase progressions, and a detector based on phase differences thereby follows.
These detectors are known as differential detectors and are indicated in Figure 6.7.12.
Usually, such techniques are very inefficient for M > 2 and for longer pulse shapes.

A technique due to Svensson {85] decodes CPM with an intentionally mismatched
trellis, which has fewer states than a matched trellis. By referring to Figure 6.7.13, we
can see a binary 1-REC phase tree hiding in the binary 3-RC phase tree, the former
indicated by the dashed lines. This would suggest that detection can be performed with
one-fourth the number of trellis states. The sacrifice in error performance is discussed
in [85], but is not simply summarized. However, for small 4 it is known that fractional-
decibel losses are possible for significant savings in complexity. Of course, we retain
completely the attractive spectral attributes of the transmisted signal,

rity —— Ban‘dpass - 0—— Dacision ﬁn
Filter
Delay
T
Figure 6.7.12 Differential detector for CPM: r is optimized for a given
scheme. Note similarity to DPSK detector.
4hn T ! —T
3hn |- -
2hn | e
- )
hﬂ — \” -
el
0 -
-hn -~ —
-2hn
-3hn | i
~4hn L L L . .
0 T. 27, 3T, 4T, Figure 6.7.13 Binary 1-REC phase
. tree superimposed on binary 3-REC
_ Time phase tree, suggesting simplified,
(in Symbol intervals) suboptimal trellis decoder.

Multi-h codes is the name given to CPM modulation wherein the modulation
index is made to vary with time in periodic fashion {85]. Proper choice of the set of
modulation indexes can prolong the quickest remerger time in the trellis, thus increasing
the free distance. An example is the alternation between h = - and h = — with binary
1-REC. This can be decoded with a four-state (time- varymg) trellis and has shortest
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merger events of length-3 symbols, rather than two with standard 1-REC signaling. The
power spectrum is well approximated by assuming a fixed-# analysis, using the average
value of h over the cycle [87].

As with any modulation technique, we can redundantly code the inputs to a CPM
modulator, achieving further increase in the free distance of the system. For example,
we could adopt 4-ary 1-REC signaling with A = 1 as the signaling base but code
these inputs with an R = % trellis code accepting one bit per interval. Figure 6.7.14
itlustrates the best 4-state coding scheme with these parameiers, [87, 88]. The combined
transmission method is a super-encoder combining the memory of the explicit encoder
with the memory of the CPM scheme. The net state complexity of such systems is
at most § = rk™*L, where m is the memory order of the trellis encoder and k is the
number of input bits per trellis levei. Correspondingly, the complexity of an ML receiver
increases with additional precoding.

Sometimes trellis coding of CPM does not increase the number of states in an
obvious way, that is, the minimal state description may have only 8 states rather than
the apparent 16 obtained by multiplying state complexities of the trellis encoder and the
CPM modulator. Rimoldi’s decomposition always makes clear how many states a coded
CPM system will have, and it allows direct search for the optimal free distance system,
given a specified number of receiver states {78). Related material on this issue is also
given in [79), where “matching--the enceder to the CPM modulator is found to be a
subtle issue.

We close our CPM study with a depiction of the energy efficiency/spectral efficiency
tradeoff in Figure 6.7.15. As usual in digital communications, one resource must be
traded for the other when complexity is held fixed. To measure spectral efficiency,
we adopl the Bog definition; that is, we define bandwidth as that range of frequencies
that captures 39% of the total signal power and normalize by the informarion rate to
obtain spectral efficiency. (This choice is admittedly arguable.) To measure energy
efficiency, we normalize the free Euclidean distance of the signaling scheme, relative o
2E,. Recall antipodal PSK would have a normalized efficiency of 1 on this basis, as
does MSK (which is 1-REC with h = ;-.) Schemes that are more energy efficient than
these have d}/ZE,, > 1, some schemes may be less energy efficient but preferably more
bandwidth efficient. )

Figure 6.7.15 shows this resource tradeoff for three schemes: (1) uncoded binary
1-REC, with / varying; (2) uncoded 4-ary 3-RC signaling; and (3) r = 1 coded 4-ary
I-REC, with /i varying. As we might anticipate, the schemes whose energy-vs-spectrum
occupancy curves are most efficient have the greatest state complexities.

Figure 6.7.14 Best r = 4, memory 2

1-REC = sit) convolutional encoder combined with

Un h = T/ﬂ M =4, I-REC, # =} CPM. Natural
binary labeling assumed, 11 — +3,
0l — -1,
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APPENDIX 6AT: NUMERICAL EVALUATION OF TRANSFER FUNCTION
BOUNDS

Whereas direct algebraic sotution for 7 (W, /) was reasonable for the memory-2, R = 5'
encoder used as an example in this chapter, such techniques rapidly become unwieldy as
the number of states increases, and these cases are, after all, of primary interest. Thus,
it is important to demonstrate that efficient numerical methods exist for computing the
transfer function bound.

If we consider the approach used in Example 6.14 in a more general setting, note
that an S-state convolutional code has a sphit-state diagram with an input node, assigned
value I, an output node, whose value is the desired transfer function T(W, ), and § — |
internal nodes. The system of equations can be written in the form

v=Av+b,

(6A1.1)
T(W,I)=cv.

(This assumes that there are no 1-step events from input to output, or parallel transitions,
discussed later.) In this formulation, v is a vector with § — 1 elemenis representing
internal node values. A is an § — 1 by § — | matrix of path gains in the variables W, 1,
where A,; specifies the gain from state j to state / in the graph (caution here!). Finally,
b and ¢ are, respectively, column and row vectors with § — | entries specifying the
connection of the unit input to the internal nodes and connection from internal nodes to
the output node.

We are interested in the solution to this linear system of equations. From the first
we have

v=[I-A]"'b, - (6A1.2)
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and from the second it follows that
TW, 1 =c(l—A)""b, (6A1.3)

which will be a polynomial in W, [.

In (6A1.3), the matrices are all expressed in terms of the form W% /¢, and we couid
solve (6A1.3) to obtain the algebraic form of the transfer function. However, we are most
frequently interested in the numerical value of T(W, I) upon substitution of values for W
and /, as described in Section 6.4. For example, on the AWGN channel with antipodal
modulation and soft-decision decoding, the appropriate substitutions are W = ¢~ %Es/No
and = 1. We may as well make these substitutions at the outset, obtaining matrices of
real numbers that depend on the code structure and the channel parameters. The matrix
inversion and multiplication indicated in (6A1.3) are then accomplished numerically.

There is a potential need to evaluate a large matrix; for example, with the m = 6, R = 1

code, the inverse of a 63 by 63 matrix must be computed. This inverse can be computecf.
if desired, by the rapidly convergent power series

M-A'=1+A+AT+A +- .., (6A1.4)

where A is interpreted as A - A, for example.
The following example using the four-state R = 5‘ code should illustrate this
numerical method. '

Example 6A1.1 Application tom = 2, R = § Code, Antipodal Modulation, AWGN Channel

Let’s index the three internal states of the split-state transition diagram in Fi gure 6.4.2 as fol-
Tows: (01) — [, (10) ~ 2, and (11) — 3. Inspection of the flow graph equations shows that

0O W W 0
A=]|71 0o o |, b=| W21 |, ¢=[W200). (6A1.5)
0 Wi Wi 0

b reflects the connection of the input to the graph, and c reflects the connection to the desired
output node.

Suppose that we wish to bound P, at E;,/Ny = 4, or 6 dB. From the discussion of
Section 6.4, we find this bound requires T(W. /) with / = 1 and W = e—REs/No — -2
The A matrix is thus

0
A=[1 0o oI, (6A1.6a)
0
whereas
0
b=}e*|., c={e*00. {6A1.6b)

Substituting these into (6A1.3) yields e(I — A)"' b=6.2.10"5% From (6.4.22), we then
have

2E; 172
) [(_NB"M) e BN R T (W 1))y, W REsin = 5.3 1075, (6A1.7)
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To obtain numerical bounds on P;, we recall from the discussion of Section 6.4
that the partial derivative of T(W, I) is required, with appropriate substitution for W, /.
The derivative may be approximated by

AITW. | _ TW,14+8)-TW,1)
al L 8 '

where 8 is small, say 0.01: Both numerator terms may be calculated using the matrix
methods discussed previously.

In summary, once the requisite matrices A, b, and ¢ are carefully constructed
for a given code, computation of the bounds is simple numerical work for a computer.
The error probability curve is then constructed by stepping Ey/Np in increments of
perhaps § dB, each time modifying the numerical values in the various matrices. We
also emphasize that the procedure is general to many channel models and modulation
strategies, requiring only appropriate substitution for the W variable.

An extension to this procedure can handle situations with parallel state transitions;
that is, the input node connects directly to the output node through a 1-step error event.
We simply rewrite the second equation of (6A1.3) as

TW,I)=cv+d, (6A1.9)

(6A1.8)

where d specifies path gain from input to output. The solution to this system becomes
TW.1)=cd—-A)'b+d. (6A1.10)

In Section 6.6, we discussed a modified transfer function bounding approach due to
Zehavi and Wolf [64], applicable to certain trellis codes possessing reasonable symmetry
properties. This procedure formulated a modified signal flow graph, whose solution
can be numerically evaluated using the methodology presented here. Benedetto [65)
provides a comprehensive survey of techniques for performance evaluation of trellis
codes.
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EXERCISES

6.1.1. An R =}, v = 2 systematic feedback-free encoder for a convolutional code is implemented
with the shift-register encoder shown in Figure P6.1.1. :
(a) Draw the state transition diagram and label each transition with W* /7.
(b) Find an expression for T(W, /) and determine that the free distance is 4. (The nonsys-
tematic encoder with the same parameters discussed in the text achieved df = 5.)

A{O)

%" Figure P6.11

6.1.2. Complete the labeling of the state transition diagram shown in Figure 6.1.11 for a R = %-
convolutional code and draw the corresponding trellis diagram for two levels.
613. An R =  encoder has the diagram shown in Figure P6.1.3.
(a) What are the memory order and the encoding constraint length?
(b) Identify the state variables and argue that the resulting trellis has eight states.
{¢) Formulate the matrices G;,i =0, 1, 2.
(@) This code is known to have df =4. Find one input sequence having output weight 4.

+ x}o,
Uim -
. x}"
.
u}" €
o
j Figure P6.1.3

6.1.4. A rate %— binary convolutional code is defined by the generators

1 0 01 0 00 1
Go=|0 1t 0 1], G=|0 00 0
0 011 0 0 01

() Diagram the encoder.
(b) What are the encoder constraint length ¢ and the memory order m?
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(¢) Is the code produced in systematic form?
(d) How many states does the encoder possess?
(¢) How many trellis branches enter/exit each state?

6.1.5. Lee [16] discusses unit-memory convolutional codes, that is, with m = 1, but where k and

n are not relatively prime. ﬂleGmauicesforanRa—g_—:%codewithunjtmemryare

1 00 1 0 0 0
010 1 110
Go=1¢ 0 1 101 1
¢ 00 11 0 1
Draw z gate diagram of the encoder, and describe the corresponding trellis. How many
information and code symbols are attached to each branch?

6.1.6. A 16-state feedback free nonsystematic convolutional code has generators gy = 375 and
g = 21g. (This is not an OFD code.} A systematic-form encoder with output feedback is
shown in Figure P6.1.6. Argue that the two code generators have equal number of states.
The output sequence (10, 10, 10, ...} is in the code produced by the first generator. If the
two generators produce equivalent codes, then this same sequence must be producible by
the second generator, perhaps with a different input sequence. Is this the case?

0]
v

U

Figure P5.1.6

6.2.1. (a) For the R = % code of Example 6.2, compute the column distance profile to depth
L = 4 by finding the minimum distance corresponding to all message input sequences
of length 1, 2, 3, and 4 bits. We know this code to be noncatastrophic, so find the free
distance by examining short remergent sequences. Argue that df =4

(b} If 2 decoder is forced to operate with 2 delay cotresponding to two trellis levels, deter-
mine the error-correcting capability of this decoder for a BSC. (Assume that the decoder
has operated correctly until the given time.)
6.2.2. The code shown in Figure 6.1.1c is an ODP code for R = § and m = 13. State precisely
what this means. It is known that the free distance of this code is 18. Find an input yielding
a code sequence with weight 18; note that it comesponds to message that has more than a
single 1.

6.2.3. Johannesson [24] described ODP convolutional codes and lists a systematic R = % code with
g1 = 67115143 in right-justified octal notation. Determine the column distance function of
this code to depth L = 4.

6.2.4. The (almost) industry standard R ='§ convolutional code has v = 6 and is nonsystematic
with generators go = 133 and g) = 171. Another code found by Johannesson is specified
by 135 and 147, respectively. The latter code is claimed to have optimal free distance of
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10, equivalent to the first code, but apparenly its distance profile is superior. Investigate
whether this is the case.

6.2.5. Suppose that a binary convolutional code is employed in conjunction with hard-decision
decading. In such a case, we often refer to the decoder as an error-correcting decoder.
What claims can be made for emror detection and error correction given a decoder that is
maximum likelihood? What about a decoder that uses a memory of Lp levels? (Hins: The
latter is related to the distance profile.)

6.2.6. Two R = 1, m = 3 codes have generators go = 15 and g; = 17 and go = 13 and
g: = 17, respectively. Draw the encoders, and observe that the first encoder is merely the
time reversal of the other. Argue that this implies that the two codes have equivalent free
distance, which is 6. The first code, however, has a slightly better distance profile, which
would mandate its choice in sequential decoding or trellis decoding with small memory.

6.27. Two R = 4 codes with m = 3 are specified by generators 13 and 15 and by 17 and 15,
respectively. Show that both have dy = 6, but that the second has fewer paths with weight
equaling the free distance.

6.2.8. Determine which if any of the encoders of Figure P6.2.8 are catastrophic by testing the
generator polynomials for nontrivial common factors.

Uj

{1}

X;
GF(q)
o Primitive in
GF(q)
o
+
x}" x}"
Figure P$.2.8
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6.2.9.

6.2.10.

6.2.11,

6.2.12.

6.2.13,

6.2.14,

6.3.1.,

A rate % binary convolutional encoder is described by the system matrix

1+D 1 D]
1+D+D? t1+D D?

Is the corresponding code catastrophic?

Consider the R = § code produced by Figure P6.2.10.

(a) Show that this code has minimum distance among split‘/merge error events of 4.

(b) Show that the code is, however, catastrophic, with some information sequence of infinite
weight producing a code sequence of weight that does not grow beyond 2.

(c) By drawing the trellis for this code, show an-example for decoding on the BSC that
exhibits catastrophic decoding behavior, assuming that the all-zeros sequence is trans-
mitted.

GW) = [

{1)
%" Figure P6.2.10

Consider an R = % 8-ary convolutional code defined by the polynomials go(D) = 1 + aD
and g (D) = a + &«2D. How many states does the encoder have? Show that the code is
catastrophic by testing whether the polynomials share a common factor other than D™,

(a) Using the puncturing tables listed in Table 6.8, diagram how to produce an R = %
punctured code from a mother R = % code.

(b) Describe the trellis—how many states? how does puncturing affect the number of
symbols per branch?

{c) Can you find a distance-3 error event in the trellis, as claimed in the table? Hint:
Consider free-distance events in the mother code, and examine the puncturing effect on
these with different puncturing table phases.

Why is it that a decoder for a convolutional code can profit from having more memory than

the encoding constraint length? (This is quite different than for block codes.) Couch your

answer in terms of the column distance function.

One means of obtaining decent low-rate codes is to repeat the code symbols of a higher-

rate code. For example, an R = % code is obtainable from an R = % code merely

by duplicating the two code symbols of the latter code. Argue that the transfer function
obtained in such cases is obtained by replacing W in the original transfer function by W2,

Use this construction to produce an R = % code with df = 20 by modifying the memory

order 6, R = % OFD code listed in the text.

Make a longer version of the trellis diagram in Figure 6.1.10, and photocopy it for future
use. Perform ML sequence decoding of the binary sequence ¥ = (01,00, 01, 10, 01, 00).
Assume that the encoder is initialized in the zero state and terminates after six trellis levels
in the same state. At each stage, for each survivor, tabulate the metric and trellis route. Can
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you say whether an error occurred in decoding? How can you determine whether channel

errors occurred?

6.3.2. Repeat Excrcise 6.3.1 using the analog correlation metric for & received sequence F =
(=12, 0.3,-0.5, -0.7, - 1.3, 0.2,0.4, -0.9, -1.4, 0.2, 0.1, —0.6). Note that this is a
real sequence that, when binary quantized, would produce the received sequence of Exer-
cise 6.3.1 Do both decodings produce the same estimate?

6.3.3. Use  of Exercise 6.3.2 and quantize to four levels, with thresholds at 0 and +0.7. We
have not specified the signal-to-noise ratic of the channel producing these observations,
but suppose that the four-level integer metrics shown in Figure 6.3.7 are used. Repeat the
decoding exercise. ‘

63.4. Investigate the decoder’s selection of message in Example 6.12 if the decoder operates with
four symbols of memory, releasing the oldest bit on the currently best survivor path.

6.3.5. (a) A digital signal processor chip being evaluated for implementation of the ML trellis

decoding algorithm has a clock rate of 10 MHz, so the clock cycle time is 100 ns, and
a butterfly section for an R = % code can be evaluated in, say, 20 machine instructions.
Typically, a machine instruction requires on the average 1.5 clock cycles. Ignoring time
for memory traceback, metric overflow checking, and the like, how large a trellis can
be decoded if the information rate is to be 19,200 bps?

(b) Based on the treliis size found in part (a) and adoption of an optimal code with this
trellis size, determine the asymplotic coding gain (ACG) of such a code compared to
uncoded antipodal signaling,

6A4.1. Verify the transfer function claimed Yor the dual-3 convolutional code in (6.4.10):

W

b —I2W + 5W1)

Using fong division, verify that the free distance is 4 and find the number of code sequences

having this minimum distance.

6.42. Using the information weight enumeration given in Table 6.5 for the R = % v =4 OFD
code, evaluate the upper bounds 10 decoder bit error probability for the following channel
conditions:

(a) Antipodal signaling on AWGN channel with Ep/Ng = 6 dB.

(b} BSC obtained from the preceding channel by binary quantizing.

{e} BSC obtained from binary orthogonal signaling on the AWGN channel with noncoherent
detection at Ep/Np = 10 dB.

(d) Binary orthogonal signaling with noncoherent detection and square-law metric used in
decoding, with the same SNR as in the previous case. This involves formulating P;(d)
for the noncoherent, square-law combining channel; see Section 38}

(e) Antipodal signaling on the coherent Rayleigh fading channel with Ep/Ny = 14 dB and
perfect interleaving assumed.

(0 A jamming channel that randomly jams code symbols with probability é and when
noise is present the Ej/Np = 3 dB, making the “average” SNR 6 dB. Compare with
part (a), which corresponds to full-time noise Jjamming with the same SNR. (Which is
a better jamming strategy for a jammer with the given noise power resources?)

6.4.3. Repeat Exercise 6.4.2 for the R = }, v = 6 OFD code listed in the text.

64.4. For the R = §, v =3 code listed in Table 6.3,
(a) Draw a nonsystematic, feedback-free encoder.
(b) Find a weight-4 sequence correspending to a free-distance error sequence,
(c) Form the A matrix of one-step transition gains, Note that this is a 7 x 7 matrix, buf in
each row and column are four zeros corresponding to forbidden state transitions.

T(W) =
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(d) Evaluate the upper bound on F,, with ¢ = 0.02, for a BSC using
Pe < T(W, Dyw=(ae1-e))21=1
and )
T(W)=c(1—A)"'b.

(See discussion of Appendix 6A1 for related material.)

6.4.5. (a) Use the numerical procedure presented in Appendix 6A1 to compute an upper bound
' on P, for the m =2, R = } code when used with antipodal signaling on the AWGN
channel. To get the tightest bound, use the expression

12
P @ [(25"de) ],J,RE./M, aT(W, 1)

No a1 1=1, W=e~REp/M

Plot your result versus E;/Np and compare with Figure 6.4.3.

(b) Repeat part (a) for the BSC obtained by quantizing the channel output to two levels.

6.4.6. Compute lower bounds on the decoded symbol error probability for the R = % codes with
4, 16, and 64 states, and compare with the upper bounds shown in Figure 6.4.3.

6.4.7. Based on the dominant terms in the upper bounds for unquantized and hard-decision de-
coding on the antipodal AWGN channel, argue that the asymptotic loss in energy efficiency

~ with hard-decision decoding is 3 dB.

6.4.8. Prove the inequality Q[(x 4+ »)'?] < Q[(x)!?] €772, x,y > 0. (The bound is tightest
withx > y.)

6.49. An R = } dual-3 encoder is to be coupled with 8-ary orthogonal modulation.

(a) Draw the encoder using GF(8) storage cells and GF(8) arithmetic symbology. ‘

{b) Determine the number of trellis states, the number of branches per state, and the free
distance in symbols.

(c) Evaluate the upper bound on symbol error probability when transmission is on an 8-ary
noncoherent AWGN channel and square-law metrics are used.

(d) Repeat part (c) for the noncoherent Rayleigh channel. Note the appearance of fourth-
order diversity.

(e) To achieve a better performance on the fading channel, we adopt R = { coding with
the dual-3 code by simply repeating both code symbols of the R = % code, Argue
that the free distance now doubles. (Note: This may be a net loss, however, on the
ronfading channel due to “noncoherent” combining loss at low rates.)

6.5.1. Based cn the stack algorithm description, explain why rapid increase in the column distance
function is crucial for minimizing sequential decoding computation.

6.5.2. Repeat the stack decoding process found in Example 6.18, quantizing the real-valued de-
modulator output to eight levels and calculating appropriate metrics. Does the decoder
produce the all-zeros path, corresponding to the VA solution with unquantized data?

6.5.3. (a) Consider the convolutional encoder discussed in Example 6.19, and let the all-zeros
information sequence be sent. Suppose a channel error sequence corrupts an information
position and the very next parity position. Perform the decoding steps to verify that
this paftern is correctable.

(b) Repeat if the error pattern is in two parity positions spaced by five time steps.

6.5.4. Find a triple-error pattern that is not correctable by the feedback decoder in Example 6.19;
that is, find a patiern with three errors, one of which is ¢j—s'?, which gives a syndrome in
the “no-comection” set of syndromes.

6.5.5. Formulate the feedback decoder for the systematic R = § code with m = 2, having
generators 4, 5, and 7. .
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(a) Show that the minimum distance, d.(3), for this code is 5.

(b) Determine the parity check matrix and diagram the syndrome generator, which in this
case produces 2-bit sequences,

(¢) Argue that, with decoder delay of Lp = 2, double-error correction is guaranteed.

6.6.1. The 4-state trellis code that is optimal in the free-distance sense for transmitting 2 bits per

8-PSK symbol is given in Figure P6.6.1, assuming natural binary labeling of constellation
points around the circle. Show that this implements the trellis diagram of Figure 6.6.4. Note
in particular that this code is structurally different than the best R = % v = 2 Hamming
distance code of Figure 6.1.1. Also note that, since one-step error events are dominant for
the coded 8-PSK case, in moving to eight or more states, one-step events must be prevented
by the encoder, meaning that additional memeory placed in the encoder must be assigned to
the presently uncoded input bit stream as well,

MSE

6.6.2.

6.6.3.

*g}ﬁ 8-PSK .

LSB

Natural Binary Constellation
Labeling Figure P6.6.1

This will give practice with use of Viterbi’s algorithm applied to the decoding of simple
trellis codes. Suppose that we operate with the 4-state, R =  coded 8-PSK design as
discussed in the text. We know that the encoder begins in state 0 and ends in state 0 after
the transmission of 10 bits (5 trellis levels). We receive the complex number sequence
r= (1.1e/30,09¢7730, 12160 0.7¢i%0 1.1¢/200) AR angles are in degree measure.
Draw an appropriate trellis diagram and decode the sequence. In representing the signals
and received data as complex numbers, the appropriate metric is of the form Re{s,r?). No
bias term is necessary since all signals have the same energy. Remember to save time by
first finding subset winners. What is your maximum likelihood sequence estimate?

(a) Perform set partitioning of the 32-point cross constellation shown in Figure P6.6.3.
Continue the partitioning in divide-by-2 manner umtil subsets of size 4 are produced.

Figure P6.6.3
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6.6.4.

6.6.5.
6.6.6.

6.6.7.

6.7.1.

6.7.2.

6.7.3.

6.7.4.

{b} Suppose that we wish to transmit k = 4 bits per modulater interval with a 4-state code.
TFo provide the 16 branches per state, adopt two-sets-of-eight branching se that each
supertransition amounts to labeling with a subset of size 8. Use Ungerboeck’s rules 1o
label the 4-state trellis. Here there are single-step, three-step, and four-step, and so on,
error events. Find the minimum distance of the single (parallel) error events and the
smallest three-step error event. What is the free distance of the code?

(c) If we wish an 8-state code with the same parameters, what change in structure is required
to increase the free distance?

Using the information found in Table 6.1, diagram the optimal 64-state encoding system

that sends & = 2 bits per 8-PSK symbol. Describe the optimal demodulator/decoder.

Repeat Exercise 6.6.4 for the case of k = 2 bits per 16-QAM symbol and 8-state encoding.

Show that the R = % v = 6 code, when transmitted vsing PSK, is transparent to 180°

ambiguities in the demodulator; that is, information sequences that are complements encode

to code sequences related by complementation. Show, however, that if QPSK transmission
is employed for the same code to conserve spectrum width the code is not transparent to
90° or 270° ambiguities.

Consider use of L=2 8-PSK symbol pairs to form a 64-ary constellation. Design a simple 2-

state trellis code by hand that communicates k = 5 bits per pair of symbols by partitioning

the 64-point constellation into four sets of 16 points. Calculate the free distance, and
compare the speciral efficiency in bits per dimension and the energy efficiency to that of
uncoded 8-PSK. (See Wilson [90] for discussion of this situation.)

Consider the pulse shape for CPM denoted by the half-cycle sinusoid, L-HCS, with

)= ——sin{ X~ 0<t<LT,
= — —_— <
d artT, "\t ) = !

and zero elsewhere.

(a) Sketch the frequency pulse and the phase pulse ¢{r), in particular showing that g(r)
has the adopted boundary condition g(LT;) = %

(b) Calculate successive derivatives of g(t), sketching each as a function of time, and
determine the smallest order of derivative for which the function is not everywhere
continuous. (The answer is second-order.)

(¢) Use the result of part (b) to predict the asymptotic rate of decay of spectral sidelobes
for CPM with HCS shaping.

Verify the claim of the text that for L-RC shaping the spectral sidelobes diminish for large
separation from the carrier as (f — f,)~5.

Sketch the phase tree for N = 4 levels when 2-REC shaping is employed (this is sometimes
called ducbinary FM). Assume binary (M = 2) transmission. Notice that in this case the
phase tree presents piecewise constant segments as well as linearly increasing and decreasing
segments.

A multi-i binary CPM code employs # =  and h = } on alternative bit intervals. The

pulse shape is 1-REC, so phase trajectories are linear.

(a} Sketch four levels of the phase tree.

(b) Show that the shortest inevitable merger is three treliis levels, and find the free distance
in terms of E5. You should be able t show that the performance gain is about 1 dB
over that of MSK, which employs fixed A = %
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