DN N N
j | \

o L

SN

\.X.%.z NS \

/
/.
\

78

. . C/. «3 11

Figure 6.3.4a Evolution of survivors, hard-decison decoding.

succeeds when hard-decision decoding errs. As discussed in our earlier study of decision
theory, it is possible to construct noise sequences for which binary decoding produces the
correct sequence while unquantized decoding produces an error, but on balance the second
option is superior, as we shall see.

Before moving to a discussion of implementation details for the VA, it is interesting
to note that the algorithm does not directly minimize the probability of symbol error at
any given position of the message. but instead chooses the entire message that is most
likely. To actually minimize symbol error probability, extra trellis computation must
be done, including a forward/backward recursion, for truly minimizing error probability
[30, 31] and it is simply not worth the extra effort. The same actually pertains in block
coding: an ML decoder chooses the codeword with highest likelihood, not necessarily
the policy that would minimize error probability in various positions of the decoded
message.

590 Trellis Codes Chap. 6

* 34

D N
.

oo——e (.8

AN

D . . . e 59

N N e

A

. . 55 11

2

Figure 6.3.4b Evolution of survivors, soft-decison decoding.

6.3.2 Implementation Issues'®

The fundamental sequence of operations is identical ai each state §; and is known as
add-compare—select (ACS). This suggests a building-block approach for decoder imple-
mentation, since each state is updated in similar fashion. A software implementation of
the decoder benefits from the highly repetitive nature of the basic operations. Further-
more, the decoder algorithm is a perfect candidate for parallel implementation in VLSI
architecture due to decoupling of the computation. Specifically, we can always identify
sets of originating states and sets of next states that have complete intraconnectivity, but
no connectivity with other state sets, allowing parailelism in computation. In the case
of R = % codes, we can always identify pairs of originating states that communicate
with pairs of next states, as shown in Figure 6.3.5; such structure is reminiscent of the

'Clark and Cain [50] includes a fine discussion of practical issues surrounding the VA.

Sec. 6.3 Maximum Likelihood Decoding of Convolutional Codes 591

s O
L] On
Figure 6.3.5 Butterfly section of a
trellis. A set of states has the same set
Gg * of antecedent states.

“butterfly” graph of the fast Fourier transform algorithm. More generally, we will
encounter butterfly subgraphs in the trellis with g* previous states connecting to a
set of g* next-states. For the trellis of Example 6.6, we have a single four-input,
four-output butterfly. Such trellises with a large multiplicity of branches per state,
for example, cormresponding to an R = % code, are relatively awkward to decode at
high speeds. This has led to the concept of punctured convolutional codes [19], dis-
cussed in the previous section, which allow an R = % encoder/decoder (0 be invoked
o implement a high-rate convolutional code. The decoder merely inserts a neutral
metric, or skips the metric calculation, when a punctured symbol position is encoun-
tered.

Measured in either execution time per trellis stage for a sequential processor or chip
size in a parallel VLSI implementation, the decoder complexity is proportional to g*. In
particular, the number of ACS operations, as well as the number of survivor paths, is g".
and the number of cumulative metric calculations or branches evaluated is g'*!. Thus,
the algorithm is limited in practice to reasonably small values of v, although feasibility
depends on the technology of implementation and the required speed of transmission. A
widely utilized R = % code has v = 6, with go = 1334,8, = 1713, implying a 64-state
decoder with 32 two-point butterflies in the trellis. This code has become something
of a de facto standard in the telecommunications world, primarily because it provides
attractive coding gain for still manageable complexity. VLSI implementations of the
decoder that operate at bit rates. in excess of 20 Mbps have been developed for the
commercial market [32, 33].

Several issues are involved in actual implementation of the algorithm. Foremost
is the path memory management. For long messages, say with 100,000 bits or even
unterminated communication, we would hope to avoid maintenance of survivor paths
of that length, especiaily since only the recent past information symbols are statistically
linked by the encoder memory to the current received data (recall the banded structure
of the generator matrix for convolutional codes). In fact, a finite-memory (or fixed-lag)
decoder with path memory equal to the decision depth, Np, is essentially maximum
likelihood [34]. This amount of memory ensures that all unmerged paths branching
from the comrect path at the symbol release time have Hamming distance greater than
the free distance, and therefore at high signal-to-noise ratio, the free distance event(s)
will dominate the error probability. We can no longer guarantee selection of the global
ML path when the decoder truncates its memory, but we can make premature truncation

592 Trellis Codes Chap. 6

of an ultimately maximum likelihood path have negligibly small probability, relative to
the probability of error for an infinite memory decoder. Typically, the decoder delay
Ng4 is chosen larger than the decision depth, Np, defined in Section 6.2, for margin
in this regard, and a typical rule of thumb is to use a decoder delay of four to five
times the memory order m of the code, although this rule seems to have evolved from
studies of binary rate % codes. High-rate punctured codes need even longer decoder
memory.

The manner in which survivor path histories are actually stored is usually the
following, described for the case when k = 1. For each state, we store a 1-bit pointer
signifying whether the upper or lower of two previous states produced the survivor.
After penetration into the treilis for N, levels, we “traceback” these binary strings, using
these strings to follow the state sequence backward in time, ultimately releasing a single
bit. Actually, because this traceback requires fetching survivors, extracting a pointer bit,
fetching a new survivor, and so on, it is advantageous to traceback every 8 levels, say,
releasing the oldest 8 bits of the best survivor. - This amortizes traceback effort over 8
decoded bits. In a software implementation, registers can store the path survivors, and
these can be updated by shifting, appending appropriate winning extensions, and copying
into the desired location in memory.

Finite memory decoding presents another issue related to symbol release. With high
probability, given adequate path decision delay Ny, the path survivors at stage j will have
a common ancestry (and path history) at stage j — Ny, and, if so (as in Figure 6.3.6a), there
is no ambiguity as to which symbol should be released. Occasionally, these histories will
not agree, however, as illustrated in Figure 6.3.6b. We might then adopt the rule of releas-
ing the oldest symbol of the path with greatest metric at level J; however, this requires

L N ><I

Figure 6.3.6a Survivor path histories that agree at release depth j — Ny,

S
LoD T K

Figure 6.3.6b Survivor path histories that conflict at release depth.

Sec. 63 Maximum Likelihood Decoding of Convolutional Codes 593

additional metric sorting. Another reasonable rule would be to perform majority voting
on the symbol to be released. Typically, little performance is lost if the decoder arbitrar-
ily releases the oldest symbol on the surviving path to an arbitrary state, again presuming
that N, is adequately large. In any case, decision errors due to truncation do not prop-
agate. Further memory management issves in trellis decoding are discussed by Rader
in [35].

Another implemeniation issue involves metric calculations. Instead of computing
log-likelihood branch metrics as prescribed in (6.3.1), for example, we would prefer a
fast table lookup of the branch metric. This can be accomplished if the decoder input
alphabet is discrete, that is, quantized to some degree. Of course, if binary transmission
is employed, binary decisions could be made by the demodulator, in which case the
metric computation is a trivial exclusive-OR operation of the received symbol with the
hypothesized code symbol. We have seen already for block codes that hard-decision
demodulation will cost about 2 dB in performance on the antipodal, AWGN channel,
~ vis-a-vis unquantized demodulation and decoding. The practical question is, *‘What level
of quantization is acceptable?” Simulation results for binary antipodal modulation and
rate % codes show that properly scaled 3-bit (8-level) quantization performs within about
0.25 dB of the unquantized decoder, while 2-bit (4-level) quantization costs about 1 dB.
These numbers also emerge from a study of Ry for quantized channels, as discussed in
Chapter 4.

If the receiver output data are quantized to Q levels and the number of possible
signals whose metric must be found is g, then metrics may be precomputed and stored
in a table of size ¢ by (. The entries in this table should be the log likelihood for the
pair; that is, table entry (i, j) is the logarithm of the probability of receiving quantizer
level j, given that signal i is sent. These will be noninteger valued, but they may be
scaled and rounded to obtain integer values if desired.

Example 6.13 Scaling of Metrics for 4-Level Quantization

Suppose we employ 4-level quantization for an R = % binary convelutional code, with
Es/Ng = 2 dB on a Gaussian channel. (The equivalent Ej/Ng figure is 5 dB.) In Fig-
ure 6.3.7, we illustrate the demodulator output p.d.f. for a single received code symbol and
place quantizer thresholds at 0 and +0.8E s’ 2, (This is essentially optimum for a four-level
quantizer.) In so doing, we induce a DMC with the symmetric transition probability diagram
shown.

By taking the natural logarithm of these numbers and then adding 0.2 and rounding
to the nearest integer, we obtain the integer-valued metric table shown in Figure 6.3.7.
Rounding to integers is not necessary, but merely serves to illustrate the kinds of liberties
we may take with metric precision,

A ‘final practical issue is that of metric accumulation and potential overflow. One
way to handle the metric growth is to check whether the cumulative metric to state oj =S
at time j is nearing a critical value and then subtract a constant value from af/ cumulative
metrics to place the metrics back in the range of safety. Survivor metrics tend to stay
reasonably close in value; otherwise, they would not survive. So checking any single
metric for overflow is suitable. A simple procedure recently described by Hekstra in [36]
is to utilize two’s-complement arithmetic for metric addition, in which case the overflow
problem is handled naturally.

Numerous investigations of VLSI architecture issues related to the VA have been
made, and the referances [37-39] can be consulted for readers interested in this aspect.

594 Trellis Codes Chap. 6

f(r|o) firin

0 1 2 3
1 I
-vE, 0 VE, r
0.8VE,
Output
0 1 2 3
. 0.32 .038 0.0007
Input 0 064 0.03 Transition Probabilities
1 |0.0007 0.038 0.32 0.64

0 1 2 3
0 | 045 114 -3.27 -7.26 0 __—_1______—_3__“__—_7___
-7.26 -3.27 -1.14 -0.45 -7 ? -3 -1 0
Log Likelihoods Translated, Rounded Metrics
v

Add 0.2 and Round

Figure 63.7 Four-level guantization for antipodal transmission, 0 = 4,
E;/Ng =2 dB.

6.4 ERROR PROBABILITY WITH ML DECODING OF CONVOLUTIONAL
CODES

We are now ready to evaluate the error probability for the ML decoder, given a particular
convolutional encoder, a modulation/demodulation scheme, and a channel model. We
must first define the decoding error event appropriately, however, for we should recognize
that, on any nontrivial channel, as the message length increases, the probability of ar
least one decoder detour from the transmitted route approaches 1. (In more casual terms,
an error-producing sequence of trials will eventually happen, if it is possible to happen,
in repeated trials of a probabilistic experiment!) Thus, in distinction with block codes, it
is normally not the message error probability that is evaluated for convolutional codes,
but instead a measure of the frequency of output information errors. Even though the
message error probability may approach 1 with increasing message length, the decoded
symbo! error probability can remain quite low. (This issue also perains to block coding:
if a message is transmitted as a sequence of N codewords, the probability of message
error tends to 1 as N increases for fixed codeword length n. However, the probability
that any specific message symbol is in error may still be small.)

Sec. 6.4 Error Probability with ML Decoding of Convolutional Codes 595

Convolutional codes are linear codes, making the distance structure invariant to
choice of reference sequence, and if the channel is uniform from the input, the all-
zeros information sequence can be adopted as the transmitted sequence for error analysis
purposes. We desire the decoder to select this same trajectory in the trellis after a small
delay associaied with the path comparison process.

Figure 6.4.1 illustrates a typical decoding produced by a trellis decoder, showing
that two detours, or departures, from the all-zeros path were ultimately produced. We
say node errors occur, or decoding error events commence, at trellis levels j, and j,
although the decoder does not actually select these paths until some later time. (Some
define the time of a node error as the time of remerging—the difference is immaterial
in the end.) These decoder detours occurred precisely because the metric increment of
the incorrect path was greater than that of the correct path over the unmerged segmenis.
It may be that two other paths shown in dashed lines in Figure 6.4.1 also have greater
metric increment over their unmerged spans than the all-zeros path; however, these were
not selected (and did not induce a node error at their starting point) because the path
shown as the selected path had still better metric as measured by the Viterbi algorithm.

We are uitimately interested in the probability of two events. The first is the event
that at some time, say j, the ultimately selected path will diverge from the all-zeros path.
We say this constitutes a node error at stage j and denote the probability of this event
by P.(j). As might be expected by now, we will settle for tight upper and lower bounds
to this probability. Of greater interest is the postdecoding probability of symbol error,
denoted P,. We will get to this by first bounding the probability of node error.

To evaluate P.(j)}, let’s define the set of all error events diverging from the all-
zeros path at time j as [, for “incorrect.” Given the preceding discussion, we may bound
the probability of this event by

P.(j) = P(some X" € ! has higher likelihood than the all-zeros path) (6.4.1)

The inequality follows because it is necessary, but not sufficient, that a path in / have
higher likelihood for it to induce a node error at time j, as discussed with reference to
Figure 6.4.1. In general, P,(j) depends on j for a finite-length trellis, since the size of
an incorrect subset depends on j, but by assuming a long message so that end effects
may be neglected, we may pick any stage, say j = 0, for the calculation, and we will
call this simply P,. (The node error probability is, in fact, smaller near the termination of
decoding due to extra side information held by the decoder, and our assumption retains
a valid upper bound.)

Transmitted Sequence

0 fi / J2 m+L

Decoder Detours

Figure 6.4.1 Error events beginning at j, and j;.

596 Trellis Codes Chap. 6

The node error event is a union of error events, each involving the choice of a
specific incorrect path instead of the all-zeros path. These constituent error events are
all defined in terms of common random variables, however, and exact calculation for P,
is formidable. Thus, we resort to a standard union bound:

P. < 3 P has higher likelihood than the all-zeros path)

et | (6.4.2a)
= Y PIAGY.F) = AKD, D).
. if!)e’
A simple lower bound is
) P. > PIAGYY) > AGD, B)]. (6.4.2b)

where X'/ denotes any single error event with distance dy relative to the all-zeros path.

Each of the probabilities in (6.4.2) is a two-codeword probability of error, which
depends on the modulator/channel/demodulator configuration, but in typical cases ulti-
mately on the Harhming distance, d, between the all-zeros sequence and the specific
incorrect sequence. (Recall, for example, that the two-codeword probability of error for
antipodal signaling on a Gaussian channel has a Q-function dependence on the Hamming
distance.) More generally, for memoryless channels, we can invoke the Bhattacharyya
bound discussed in Section 4.3:

P(w) < B, 6.4.3)

where B is the Bhattacharyya parameler of the channel.

Because our reference path is the all-zeros path, the Hamming distance to another
path is just the Hamming weight of the latter. (This is really the only reason for assuming
the all-zeros path.) The node error probability can therefore be bounded as

Pe< Y A(w)Pr(w), 6.4.4)

w:d,

where A(w) denotes the number of error events with Hamming weight w in the incorrect
subset, analogous to the weight spectrum of a block code, and dy is the free distance of
the convolutional code defined in the previous section. Evaluation of the upper bound
thus requires enumeration of the weight spectrum for the incorrect subset. Evidently,
we must consider error sequences with arbitrarily large length and weighi, since the
incorrect subset is defined for an arbitrarily long trellis. We should anticipate, however,
that only the small weight error events are practically significant, and if the encoder is
well conceived (noncatastrophic), the weight of progressively longer error events in /
keeps growing, and the sum in (6.4.4) will converge quickly.

The required weight enumeration is provided by a clever graph-theoretic approach,
due to Viterbi [40], which views the state transition diagram as a signal flow graph.
Realizing that our goal is describing sequences that begin in the state o; = S, depart
from it, and later return, we begin by splitting the all-zero state into an originating state
and a terminating state. Any error event, or decoder detour, corresponds 10 a route from
input to output states in this split-state transition diagram. Figure 6.4.2 provides this
split-state transition diagram for the encoder of Example 6.1. In general, such diagrams
have § + | nodes or pseudostates. The diagram may also have bypass routes from the

Sec. 6.4 Eror Probability with ML Decoding of Convolutional Codes 597

source state to the sink state, when some information symbols are not part of the stale
vector, as in the encoder of Figure 6.1.1e.

Next, let us label each arc of the split-state transition graph with a path gain of
the form W*/{» where W and / are dummy indeterminates, signifying “weight” and
“information.” The integer-valued exponent x denotes the Hamming weight associated
with a given state transition, and y is an integer counting the number of information
symbol errors that would be made should the decoder eventually select the giver branch.
In Figure 6.4.2, the split-state transition diagram for the code of Example 6.1 has been
labeled accordingly. The rationale for this labeling is that it supplies an easy way to
measure the distance between the all-zeros sequence and any other: simply multiply
gains along the candidate state trajectory (which automatically adds weigh® exponents
and thereby correctly measures path distance). At the same time, we are able to count
information symbol discrepancies along any path, again due to exponent additivity. If
we follow in Figure 6.4.2 the route produced by the input (1100000...), we find a total
path gain of W/, signifying that the total Hamming weight is 6 and that the path differs
from the all-zeros sequence in two information positions. This sequence remerges with
the zero state after four time steps.

To find the fransfer function, also called the generating function, of the graph,
which provides the enumeration of all incorrect paths, we imagine injecting a constant
unit input from the source node of the graph and calculate the output. (This technique
is commonly employed in the analysis of linear feedback control systems, using Laplace
domain gains to label paths.) Before illustrating the algebraic solution, we observe that
the resulting function will be a polynomial in W and / of the general form

TW, = i iA(w‘i)W‘”I", (6.4.5)

w:d, i=]

where the coefficient A{w,) gives the number of paths having weight w and i infor-
mation errors. By setting / = 1 in (6.4.5) and summing over i, we obtain the distance
generating function or weight enumerating polynomial for the convolutional code:

T(W) = Z A(w)W?®, (6.4.6a)

w=dy

Figure 6.4.2 Split-state signal Aow
S S graph for R = 5 m =2 code.

598 Treliis Codes Chap. 6

where
A(w) = Z Aw,). (6.4.6b)
=0

Here, A(w) is the number of error events with weight w, without regard to the number
of information errors incurred. The. exponent of smallest degree in (6.4.6a) is the free
distance of the code, defined earlier.

Solution for the gain of such flow graphs can be done by writing node equations at
each of the internal nodes and then solving a linear system of equations or by applying
graph reduction procedures such as Mason's gain rules [41]. Software packages allowing
symbolic manipulation, typified by Mathematica or Macsyma, allow algebraic solution
for the transfer funciion. All these are feasible, however, only for simple codes, and a
more useful numerical procedure is used for larger codes, described in Appendix 6A.1.
To gain the essential ideas of transfer function calculation, we will again illustrate with
the v = 2 code of Figure 6.1.1a

Example 6.14 Transfer Function for 4-State Code of Example 6.1

Referring to Figure 6.4.2 and labeling values of states Sy, S3, and 3 by V4, V5, and V3 and
the output node as Vyp, we can write the node constraints as

Va=1-Wil+1V,

Va=WIVy + WIVs
(6.4.7)

Vi=WhW,+ WV,
Vo= W2y,

Solution of these equations for the output value Vy (by elimination or by method of deter-
minants) and application of the definition of transfer function gives

V 5¢1
Tw,n2 20 zl._’___
1 12wl

o0
— Z 2w—-5ww!w—4

w=>5

=Wl L awsrt 4w’ 4.
(6.4.8)

where the second step follows from long division. [The fact that the final form collapses so
neatly is special to this code, and in general we must leave the result in the form (6.4.5)]
This polynomial reveals the following:

1. There exists a single error event of weight 5 (the free distance event) with a single
information error,

2. There are two events of weight 6, both with two information errors, four events with
weight 7, carrying three information errors, and so on.

We can readily locate these by traversing the graph of Figure 6.4.2. Notice that the path
enumeration does not classify events according to length, however.
Furthermore, setting / = 1 yields the weight enumerating function

TW)=) 2u-Syv
ug (6.4.9)

=W 2w pawT ...,

Sec. 6.4 Error Probability with ML Decoding of Convolutional Codes 599

We will see shprfly that P, is bounded by mere substitution of channel-related values in
T(W).

Example 6.15 Transfer Function for Nonbinary Memory-1 Codes
Convolutional codes with memory v = 1 are commonly known as dual-k codes. The
encoders possess g states, where ¢ = 2%, fully connected to each other in the trellis.
Odenwalder [42] has shown that the transfer function for R = % dual-k codes is

(g - W
1 —102W + (¢ -)W
Upon long division, we find the minimum-weight exponent is 4, which therefore is the free
distance of memory-1 codes, and the comesponding coefficient is g — 1. This means simply
that all ¢ — 1 input sequences with a single nonzero input yield a weight-4 output sequence.
This is not surprising after inspection of the structure of Figure 6.1.5,

¢=4,8,16,.... (6.4.10)

TW.,ih=

Once the weight enumerating polynomial T (W) is obtained, we have the coeffi-
cients A(w). Given a channel model, the relevant two-codeword error probability P> (w)
may be formulated, and if P,(w) can be expressed as an exponential form, BY¥, then the
node error probability P, is bounded by

Po <Y A(w)P,(w) < > AWIBY = T(W)w=s (6.4.11)

Examples will follow for specific channels.

The quantity in (6.4.11) should be properly interpreted: it is an upper bound to
the probability, F., that at any time j the decoder will have eventually selected a path
splitting from the correct path at time j. The sum simply bounds the marginal probability
of a node error, and it is not correct to say that the probabitity of having node ermrors at
times j and j+m + 1, when the closest two node errors may occur, is P2; that is, the
node error process exhibits dependencies. In the operation of a real decoder, (6.4.11)
supplies a bound on the average frequency of error events measured over time.

The symbol error probability, P;, at the decoder output is usuaily of more interest
than the node error probability. We define P, as the expected number of symbol errors
produced per trellis level, divided by the number of information symbols processed per
level:

E[number of symbol errors] 1 . . .
p A k” < - ;Z::Am;. PPy(w). (6.4.12a)

This is just a weighting of each term in (6.4.4) by the number of information symbol
errors that would occur if the specific path is selected and then nonmalizing by the number
of symbels proccssed per level of the trellis. Although of lesser interest, a lower bound
on P; is obtained by examining free distance error events, multiplying its probability of
selection by the maximum number of information errors attached to one of these, [,
and then dividing by k:

{max
P> ———“L Pydy). (6.4.12b)
A simple lower bound is obtained by setting /p. = 1.

600 Trellis Codes Chap. 6

Now natice that if we formally differentiate the series T (W, I) with respect to /
and then set ! = |1 we obtain the polynomial

w =¥ Siaw,ow®, (6.4.13)

= w=dy i=0

whose coefficients i A(w, i) are the required terms in (6.4.12a). This reveals that T(W, I)
provides the complete path enumeration required to upper bound both P, and P;.

Example 6.16 Symbol Error Probability for the R — %, v =2 Code
For the code of Example 6.1 we determined .in (6.4.7) that
51 1

TW,I)= T Wit

Zzw Spwpw—a, (6.4.14a)

By differentiating with respect to f, and then setting / = |, we find that

AaTW. 1) 5
— 4P TIWY 6.4.14b
T e § (w — 4)2 (6.4.14b)

w=35

Study of the polynomial coefficients reveals a toral information weight of 1 on weight-5
error events, information weight of 4 on the weight-6 events, and so on. This is in agreement
with the data of Table 6.10.

The upper and lower bounds then become

oo
- PyS) < Py) (w42 Py(w)
w=5 (6.4.14¢c)

= P2(5) +2P2(6) + 3Py (1) + - - -.

Generally, we will find that the upper and lower bounds pinch together as channel quality
improves, meaning that performance is dominated by free-distance error events.

In summary, the transfer function 7(W,) has been linked with the computation
of node error probability and its partial derivative with the calculation of symbol error
probability. We now proceed to apply this bounding procedure for several channel models
of interest.

6.4.1 Performance of Binary Convolutional Codes on
Nonfading Channels

The preceding formulation is known generally as the transfer function bounding approach
and is general to memoryless channels through invocation of the Bhattacharyya bound on
Pr(w). It is most appropriate for uniform-from-the-input (UFI) channels, those for which
every input has a statistically uniform connection to the output. UFI channels include
binary antipodal, M-ary orthogonal, M-PSK, and others, on the AWGN channel and
most other practical situations. In any case, the formulation at least provides an upper
bound on more general memoryless channels. All that is required to proceed further is
an expression for the two-codeword probability of error. In this section we compare the

Sec. 6.4 Error Probability with ML Decoding of Convolutional Codes 601

performance of various coding options on several binary channels of practical interest,
illustrating the application of the upper bounding procedure.

Anfipodal Signaling on the Gaussian Channel

Let’s assume that the binary code symbols are transmitted using a binary antipoflal
signaling strategy. We recall that the probability of confusing two codewc@s ha’n.ng
intercodeword Hamming distance d, when antipodal signaling is employed in additive

white Gaussian noise, is
2E 12
Pyd)=Q [(e dR)] . 6.4.15)
No

This again follows from the fact that each unit of Hamming distance under antipodal
signaling produces Euclidean signal space distance of 4E;, and E; is in turn represented
by RE,.

By substituting (6.4.15) into the transfer function bound obtained in the previous
section, we have that the node error probability is upper bounded by

o0 ZEb lﬂ
Pe<) Aw)Q (-——wR)) (6.4.16)
- No :
W—d]
By employing an upper bound to the Q-function, Q(x) < e~*'/ /2 (see Section 2.2), we
can (more loosely) upper bound the node error probability by
] o
Pe<s u; A(w)e ™ (Es/NwR 64.17)

Comparison of this expression with (6.4.5) and (6.4.6) shows that
1
Pe < ET(W, 1)”=|.w=e-l£pfﬁu . (6.4.18)

revealing that an upper bound on node error probability requires only substitution of
appropriate numerical valpes into T (W, /). This feature is really the ultimate benefit of
the transfer function methodology.

The upper bound of (6.4.18) can be improved by using a tighter bound for each
term in (6.4.16). Specifically, we use the inequality

QWx+y) QN2 x.y=>0. (6.4.19)

(This result is left as an. exercise.) By redefining the sum index in (6.4.16), we can
rewrite the sum as

oo : 172
P. <Y Al +dp)Q [(M)] . (6.4.20)
i=0 No

602 Trelis Codes Chap. 6

Applying (6.4.19) to this expression gives

B 177 «
2Ebdf R . —iREpIN
P<0 (———No) | LA v e

1727
= Q F(M) edeEh/NO i A(w)e—wREb/No.
w=df

(6.4.21)

The last sum can again be recognized as T (W) with appropriate substitution of values
for W and /. Thus, the tighter, but more cumbersome, upper bound is

12
P(< Q [(25%3)] edeEh/NOT(W)IW=(-REh/N0 . (6.4.22)

The oniy difference between this upper bound and that of (6.4.18) is a tightening of
the multiplier coefficient; at typical code rates and SNRs this represents an important
difference in apparent energy efficiency. Both upper bounds give the same asymptotic
thigh SNR) dependence, however.

Continuing, use of the inequality Q(x) < e~*/2/(2m)'/2x, also developed in Sec-
tion 2.2, yields the slightly more compact result

e

1
TW)iw=e-rewm 6.4,23
= (2nd;RE,/Np)' 2 (W) \wae-ren ()

This expression is accurate when E,/Ng is relatively large, but obviously becomes a
weak upper bound for small SNR. There, (6.4.22) is preferred.

In exactly similar manner, an upper bound on symbol error probability is obtain-
able for this channel. The weaker bound, analogous to that of {6.4.18) for node error
probability, is

1 oT(W. I)

P)
s < 2k af [=1.W=eREnify

(6.4.24)

A tighter upper bound (for large SNR) is obtained by the more careful bounding of the
-function as performed previously:
1 oT (W, 1)
P < .
k(27rdeE,,/N0)'/2 al =1 W=e REpNo

= : 3 Naowy
B I'((ZfrdeE,,/No)fﬁ — w) |W =~ RERMy -

(6.4.25)

Here N(w) is known as the information weight of the distance-w error events, that is,
the sum of the number of message 1's on all distance-w detours.

In Figure 6.4.3, upper bounds on P, are plotted versus Ej, /N, for R = % convolu-
tional codes with v = 2, 4, and 6, using the bound of (6.4.25). (We have not shown lower
bounds, although it is known that the upper bounds are asymptotically tight at higher
SNR; Exercise €.4.6 invites a calculation of these for comparison.) For the v = 2 case,
the bound of (6.4.24) is also depicted. Two comments are noteworthy. First, the (6.4.25)
is significantly more accurate than the first in the small error probability region of normal

Sec. 6.4 Error Probability with ML Decoding of Convolutional Codes 603

107

1072

104

1078

1076

interest. Second. the energy efficiency difference beiween the v = 2 and v = 6 codes is
about 1.7 dB. If we had plotted results for intermediate memory orders, we would find a
gain of about 0.4 dB in energy efficiency at P; = 1073 for every increment of v, or every
doubling of the trellis size, for v ranging from 2 to 6 (see also Heller and Jacobs [43]).
We should not extrapolate this rule of thumb too far, for if applied to larger memory
codes, we soon project performance violating the Shannon capacity bound!

If we compare the leading term of (6.4.25) with the performance of uncoded an-
tipodal signaling, P, = Q[(2E,/Ny)'/?] and ignore the nonexponential dependence in the
expression for coded symbol error probability, we see an effective gain in the energy-to-
noise density ratio of 10 log(Rdy) dB. This quantity is often dubbed asymptotic coding
gain (ACG) because it represents the savings afforded by coding at high SNR where the
leading term of (6.4.25) is truly dominant, and even the error multiplier is insignificant
in terms of energy efficiency. In this sense the interpretation of ACG is exactly as it was
for block codes. This coding gain translates directly into increased link distance, smaller
antennas, or smaller transmitter powers for equivalent bit rates. Or, for these parameters
held fixed, coding gain represents a potential increase in bit rate. Thus, for the 4-state

= —} code with dy = 5, we project an asymptotic coding gain of 10log(5/2) = 4 dB.
The actual gain at P, = 1077 is, according to Figure 6.4.3, nearer 3.5 dB. The discrep-
ancy is due to two effects: (1) at the prescribed error probability level, the error multiplier
effect is not truly negligible; and (2) error events with distance greater than dy are some-
what important. Generally, we will find that simple codes approach their asymptotic gams
relatively quickly, while larger memory codes are slower to achieve the asymptotic gain,
For example, the 64-state, R = 21 code has & projected gain of 10 log (10/2) = 7 dB,

Uncoded
Antipodal

256

2 3 4 5 6 7 8 9 10 Figure 6.4.3 Probability of decoded
symbol error for R = % convolutjonal
codes, state complexity varying.

604 Trellis Codes Chap. 6

hut at P, = 1073 the actual sain (according to the upper bound) is a more modest 5 dB.
¢See again Figure 6.4.3.) _

A corollary of this discussion on high SNR behavior is that for increasingly large
SNR the dominant error types in Viterbi decoders are free-distance error events (there
may be more than one type of course). Typically, these are short detours having length m
(or slightly larger) trellis levels and with a relatively few number of symbol errors. On the
other hand, as SNR decreases the longer error events become more prevalent. Table 6.11

TABLE 6.11A BIT ERROR
LOCATIONS AND DISTANCE
OF ERROR EVENT,

Ep/No = 6 dB, A = §,
4-STATE CODE, Pp = 1075

Error Locations Distance

71241

222692, 222694
292265

378008

383692

398652

496940

585536

648275

h Lh Lh Wh L L L ON LA

TABLE 6.11B BIT ERROR LOCATIONS AND
DISTANCE OF ERROR EVENT, Ep/Np =3 dB, R = §,
4-STATE CODE, P, =36.103

Error Locations Distance

455,456,457 458

714

937,938

2888,2889

2924,2926,2918

3049

3605,3606,3607,3609
4198,4200,4201.4203

42714272

4287

5894

6223

7094

7737.773%

T887,7888

7991.7992,7994,7996,7998 8000,8001,8003
10108,101 11

10771

11088.11090
HT7411776,11777,11779,11780.1 1782

DN LA A OO0 00 h = NN L O

Sec. 6.4 Error Probability with ML Decoding of Convolutional Codes 605

lists bit error locations from a Monte Carlo simulation of the code of Example 6.1 at two
different SNRs; we can see the predominance of single-bit (dy) error events at higher
SNR, while longer error events begin to emerge at the lower SNR.

On the coherent Gaussian channel, use of low-rate, wider bandwidth codes is
advantageous, assuming that there is no bandwidth constraint. This is predictable from
Ry analysis as we have seen, and actual good codes reflect this gain. In Figure 6.4.4,
‘transfer function upper bounds are shown for modest complexity 16-state codes with
rates 1, 1. and Z. Except for the high-error-rate region, where the bounds are dubious
anyway, the low-rate code performs best, although not by large amounts. Asymptotic
coding gain calculations also reflect this improvement, obtained by an increased product
of rate and free distance; the ACGs of the rate , 1, and 2 16-state codes are 6, 5.4, and
3.2 dB, respectively, as reference to tables of OFD codes in Section 6.2 will show.

101

102

Unccded

10 Antipodal

OFD, R-%

104 |- (ACG = 5.4 dB)

OFD, A=}

OFD, R=!
(ACG-,SdB) " (ACG = 5.2dB)
105 |
10-5 | I 1] | i 1 1
1 2 3 4 5 6 7 8 9 10

Ex/N,, dB

Figure 6.44 Probability of decoded symbol error for 16-state convolutional
codes, code rate varying.

Binary Symmetric Channel

To apply the upper bound analysis for convolutional coding on the BSC, we merely
need the two-codeword error probability, which for the BSC can be bounded by the
Bhattacharyya bound of (4.3.15). (Somewhat tighter upper bounds can be obtained by
expressing the two-codeword error probability more accurately in terms of d, as shown
by Van de Meeberg [44]; however, these approaches do not lead 1o the compact results
found in the following.) The Bhattacharyya bound on the two-codeword probability of

606 Trellis Codes Chap. 6

Py

1071

102

-2.5

1073

104

10°%

105

error between the all-zeros sequence and one with Hamming weight w is
Py(w) = [4e(1 — e))'?]", (6.4.26)

where € is the channel crossover probability for each code symbol. We may apply
this term by term in (6.4.9) and again compare this relation to the power series for
T(W, 1), (6.4.4), to obtain

P(- < T(W)”V:(“”,E))Iﬁ . (6.4.27)

Again, the utility of T(W) appears: we merely need to substitute appropriate values for
W to obtain upper bounds on desired error probabilities.

Similarly, to upper-bound symbol error probability, we have
19T (W, 1)

s < 7

. 6.4.28)
k8l ji=1.w=lde(-e'? ()

This expression can be evaluated as a function of the crossover probability € for any
binary modulation technique, but an interesting comparison is obtained when we view
the BSC- as a sign-quantized (hard-decision) antipodal signaling channel. In that case

12
(-0 [(@R)] 6429
My

Evaluation of the upper bound for the 4-state, 16-state, and 64-state R = % codes is
shown in Figure 6.4.5, and comparison with the unquantized counterparts in Figure 6.4.3
shows that a roughly 2-dB loss ensues when hard-decision decoding is performed. This

also closely reflects our judgment based on the Ry parameter, found in Section 4.5,

Uncoded
Antipodal

Figure 6.4.5 Probability of decoded

1 2 3 4 5 6 7 8 9 10 symbol error for R = ='; convolutional

codes, state complexitf varying,
Ep/No, dB hard-decision coding.

Sec. 6.4 Error Probability with M. Decoding of Convolutional Codes 607

and parallels similar finding for block codes on this channel. Asymptotic coding gains
are even more Jpessimistic, projecting a 3-dB penalty for hard-decision decoding (see
Exercise 6.4.7). Lowering the code rate below % buys minor gains in energy efficiency
for coherent detection of symbols prior to hard decisions, reflecting the predictions of
Section 4.5.2.

One of the most important reasons for the preeminence of convolutional codes
in the last decade on Gaussian channels is that it is only a little more difficult (by
changing the metric calculation) to perform maximum likelihood (correlation) decoding
instead of hard-decision decoding, thereby gaining a very inexpensive 2- to 3-dB gain
in performance. Such has not been the case with block codes, although there has been
important progress in soft-decision decoding of block codes.

6.4.2 Generalization 1o Bhattacharrya Expression

For an arbitrary memoryless channel, we can often obtain a bound on the two-codeword
error probability of the form (6.4.3), and the possible cases are surprisingly varied,
including noncoherent detection, fading channels, jamming channels, and various as-
sumptions about decoder side information, and can accommodate suboptimal, non-ML
decoder metrics. In any case, we can obtain the bounds

Po<T(W)w-s (6.4.30a)

and
18T(W. D

P .
s < k al [I=1.W=8

(6.4.30b)
where B is the Bhattacharyya or Chemoff bound parameter appropriate for a given
setting. Simon et al. [45] discuss this application of transfer function bounding in detail.

6.4.3 Nonbinary Convolutional Codes and
Noncoherent Detection

On noncoherent channels, at least where bandwidth is not a premium, convolutional
coding combined with orthogonal signaling and noncoherent detection provides high
energy efficiency, as calculations of Chapter 4 indicated. The techniques can include
coding a g-ary sequence with a nonbinary convolutional code, as with the dual-k codes,
the codes of Ryan and Wilson [18]. Altematively, we may simply map a binary bit stream
onto a g-ary orthogonal alphabet using the binary-to-g-ary codes of Trumpis [8]. Viterbi
[46] has also described orthogonal convolutional codes, a simple encoding scheme that
maps a binary sequence onto a g-ary sequence using a shift register with log, q stages,
as shown in Figure 6.4.6 for the case of ¢ = 32. It is not difficult to conclude that the
free distance of such an encoding scheme is log, ¢ Hamming units (in symbols). The
trellis also has q/2 states, so this scheme links the trellis size to the modulator set. Each
trellis state communicates with two others.

In Figure 6.4.7, we present some results of Ryan and Wilson [18] for rate % 4-ary
convolutional coding with memory order 3. From Table 6.6, we find that the best code

608 . Trellis Codes Chap. 6

Uy

y r

. ie 0,1, ..., q-1 g-ary
Signal Selector —1 Modulator [

Figure 6.4.6 Convolutional orthogonal encoder.

with these parameters has a free distance 8 and that the information symbol weights
at distances 8 and 9 are 39 and 42, respectively. Using these two terms in a transfer
function bound (this is no longer an upper bound when terms in the sum are dropped),
we approximate the symbol error probability at the decoder output by

F, < 39P5(8) + 42P+(9),

where P>(w) here is the probability of confusing two sequences built with 4-ary or-
thogonal signals and when noncoherent detection is employed. An approximation to
the optimal metric for decoding is the square-law metric; that is, the stage metric on a
given path is the square of the correlator channel corresponding to the hypothesized code
symbols.

Bucher [46] has also studied coding for g-ary orthogonal sets.

107
—LE— R-1/2,m=1,8-ary
R (A = 1/2, dual-3)
10 2 ~ \\é\ --i—- R= 1/2, m= 2! B-ETY
- \ __A _R=1I’3-m=3'4-ary

103 .
binary-to-4-ary

1074

Ny

105

10-6

1077 \\

10-8 \L

8 6 7 8 9 10
Ep/Ng, dB

Figure 6.4.7 Bit error probability upper bounds and simulation results for
nonbinary convolutional codes. g-ary orthogonal signals, noncoherent detec-
tion, AWGN channel.

Sec. 6.4 Error Probability with ML Decoding of Convoiutional Codes 608

6.4.4 Fading Channel Performance

On Rayleigh fading channels, it is normally hoped that sufficient interleaving of the
convolutional encoder output and deinterleaving at the receiver output can establish a
memoryless channel as seen by the encoder/decoder tandem. Whether this is in fact
achievable depends on channel decorrelation time and the allowed transmission delay. If
such is the case, then channel coding can accomplish an implicit time-diversity effect, as
we saw with block coding. An advantage here is that soft-decision decoding is relatively
easy to implement, and the potential diversity order is as large as the free Hamming
distance of the code, rather than roughly half this value.

Modestino and Mui [48] have studied convolutional coding on Rician fading chan-
nels, in conjunction with antipodal signaling, coherent detection, and sofi-decision de-
coding. Figure 6.4.8 shows results for the Rayleigh fading case with a rate § code with
and without interleaving,

Example 6.17 Fading Chaanel Application Using a R = | Coavolutionsl Code

Consider a tropospheric scatter appiication, where over-the-horizon communication is sought
using transmission in the 50-MHz region, exploiting the refraction of electromagnetic snergy
in the troposphere. This channel is known for its strong fading effects, which are also quite
slow. Suppose the desired data rate is 19,200 bps and that we opt for a memory 6, rate }
convolutional code. Code symbols can be interleaved using a 1024 by 64 interleaving array
to combat slow fading, as shown in Figure 6.4.9. Thus, the interleaving depth is B = 4096
code symbols, which at the 38,400 symbol per second rate is about {f second, perhaps long
enough so that the channel fading on symbols as seen at the output of the deinterleaver
is relatively independent. The interleaver width of 64 code symbols is consistent with a
decision depth in the decoder of 32 stages.

10!
m=5, R=1/3, No Interleaving

10—2 =

104 |- m= 5\R= 113, Full-interleaving

Figure 6.4.8 Transfer function upper

10-5 4 Ly L bounds for coded PSK on Rayleigh
2 4 6 8 1 12 14 16 f:hannel. Note zero diversity withow
interleaving. Taken from Modestino,
Ep/No. dB and Mui [48).

610 Trellis Codes Chap. 6

- ,
Uy m=6,R= 3 M Interleaver Mo:;ﬁ:(ator

Conv Encoder | o

1024 Interleaver Architecture

Figure 6.4.9 Transmitter for Example 6.17.

6.5 OTHER DECODING PROCEDURES: SEQUENTIAL DECODING AND
FEEDBACK DECODING

Maximum likelihood decoding of trellis codes is the preferred decoding method, provided
that the receiver complexity, primarily measured by the number of decoder states, is
acceptably small. Ultimately, this judgment must be made in the context of requirements
on decoder speed and available technology. In this section, we focus on altemnative trellis
decoding possibilities that forego the requirement for maximum likelihood decoding in
exchange for simplified decoding; these are known as sequential decoding and feedback
decoding.

6.5.1 Sequential Decoding

Sequential decoding algorithms actually predate the maximum likelihood decoding algo-
rithm of Viterbi and do not utilize a trellis perspective on the code. Instead, we simply
imagine the set of all message sequences as populating a tree, rooted at the known start-
ing state of the encoder. A sequential decoder attempts to find a high, if not highest,
likelihood path from the starting state to the known ending state. It does so by a sparse
search of the trellis (or tree), using one of two basic algorithms. The algorithms are as
foltows:

1. The Fano algorithm [51], which proceeds forward and backward in the treilis,
continually trying to forge its way forward along a high likelihood route.

2. The stack algorithm, due to both Zigangirov [52] and Jelinek [53]. This algorithm
is more memory intensive, maintaining candidate paths on a stack, resorting the

Sec. 6.5 Sequential Decoding and Feedback Decoding 611

stack according to path likelihond, snd proceeding along the currently best paih.
1t does not, however, backtrack in the sense of the Fano algorithm.

The. decoding is usually applied to packets, or frames, having length L + m. With
either algorithm, as soon as a path with the requisite length L 4 m is found, it is released
as the decoded path.

Computational effort in sequential decoding is largely independent of the memory
order of the encoder, in sharp contrast to the Viterbi algorithm. Thus, we usually find
sequential decoding applied to codes with large memory order, say 20 symbals, for which
the free distance is large. Furthermore, the encoders are often systematic, feed forward
in form for simplicity; the loss in free distance can be made up with increased memory
order without unduly affecting decoding effort.

Decoding can fail in two ways. First, the decoder may choose an incorrect path of -
the required length; this is normally very unlikely, however, if the free distance is large,
hence the desire for iarge memory order. The second failure mode, and the more typical
one, is due to variable computation in decoding: we cannot be sure at the outset how
much computation in exploring the code tree will be required, although we can assess
its statistical distribution. Essentially, the decoder can fail to decode correctly by simply
running out of time; either the time to decode a fixed-length packet of data is too large,
or in an indefinitely long message the decoder’s penetration depth falls too far behind
the incoming data, producing a buffer overflow and need to restart. These events are
more probable as the channel quality degrades.

When such a decading failure occurs, it is at least a detected error event, so a
frame erasure is normally declared, and a request for retransmission can be initiated.
Alternatively, the raw data can be released to the user, with a detected emror stamp, if
refransmission is not possible. Sequential decoding can be used effectively in conjunction
with automatic-repeat-request (ARQ) protocols.

Stack Algorithm

We will discuss only the stack algorithm, although there seem to be advantages to the
Fano algorithm in very high speed applications. For a discussion of the Fano sequential
decoder, the reader is referred to Lin and Costello [6] and the earlier references {511
(Incidentally, the name stack algorithm is somewhat misleading; there really is no stack
in the conventional data structure sense of the term, but only a list capable of being
sorted.) '

Before discussing the details of the algorithm, we should note that with sequential
decoders we need a fair means of scoring the relative merits of decoder hypotheses that
have different lengths and thereby deciding where to proceed next in the tree search. Fano
proposed that the proper branch metric should be, given a discrete-valued demodulator
output r;,

: Pr; | x;')
Arj,x,"} = log, | ———"| ~ nR, 5.
(rix,"’) = log, I n (6.5.1)
where R is the code rate in bits per code symbol and n is the number of code symbols
per branch in.the tree or trellis. Since each branch is the result of n independent channel

612 Trellis Codes Chap. 6

actions, the branch metrics can be evaluated as sums of symbol metrics if desired. In
this case, the metric for scoring received symbol r against transmitted symbol x is

P(rlx)] R

(6.5.2)

Ar, x) = log, [P

If the demodulator supplies continuous random variables, we use p.df.’s in place of
probabilities in (6.5.2).

Fano proposed this metric for sequential decoding of tree codes on rather heuristic
grounds, and the metric has come to be known as the Fano metric. Massey [54] justifies
its adoption as follows. Suppose we have B codewords X’,i = 0,1, B — 1, having
variable lengths ng, ny, ..., ng_; in a hypothesis tree, and to each codeword ¥ we
append a random tail t) selected from the code alphabet to make the net length of
each codeword identical, that is, n(L + m). We designate each such complete string
zY). The connection with sequential decoding is that at some stage of the tree search our
decoder will be evaluating paths of differing lengths, and in particular needs to ascertain
which path to extend next. The most probable codeword sequence, given the complete
received sequence T to date, is the natural choice, and adoption of the preceding metric
property measures a posteriori probability, given the codeword’s length, and assuming
equiprobable selection of all complete strings z). There seems to be no claim that
this metric will minimize average computation or that it maximizes the probability of
eventually locating the ML path. However, it is certainly well motivated, and simulation
has shown other metrics involving other *‘biases” to be inferior.

A flow chart of the stack algorithm is found in Figure 6.5.1. We begin the decoding
cycle by initializing the stack with the root node and define the initial metric as 0. All
g* extensions of the root node to level 1 are evaluated by adding the branch metrics
as in (6.5.1) to the initial metric. These list entries are then sorted on the basis of
cumulative metric (actually, only the best must be found at this point in our presentation).
The new top-of-stack entry is then extended to all its descendant trellis nodes and then
deleted from the list. At this point there are ¢?* — 1 list entries, having differing path
lengths. Sorting finds the single best among this list, and so on. At the end of each
extension cycle, we check whether the top-of-list path has length corresponding to the
tree length L 4+ m, and, if so, terminate the procedure, releasing the top-of-stack path
as our decoded sequence. If the best path has insufficient length, we repeat anuther
extension cycle. Notice that buffering of the received data is required while the search
is proceeding.

The list size grows with each extension cycle; if ¢ = 2 and k = 1, the list
size increases by one cell for each cycle. Memory overflow due to finite memory size
limitations is an obvious concern, and we address this later. If the channel is noiseless,
then the top-of-stack path will have one extension that always remains the best of the
list, and both stack growth and computationa! effort are minimal. Channel noise causes
the decoder to have ambiguity about which path to extend, causing an increase in both
computation and stack size.

The algorithm can include a check to see whether a newly extended path reaches a
state reached by another path with the same length in the list. If this were to happen, we
would say the paths were merged and thus would have identical descendant subtrees. The
weaker of the two paths should be removed, as in the VA. Actually, there is no critical

Sec. 6.5 Sequential Decoding and Feedback Decoding 613

Initialize stack
to
root node

Input
received
data

Extend TOS
path to ¢
descendants

Sort stack
contents by
metric

TOS
Length=L+m,
State = (7

Figure 6.5.1 Flow diagram of stack
decoding algorithm.

problem with maintaining both paths, except that both might be extended unnecessarily,
consuming time and list space. However, this merging possibility is normally a very rare
event, since with large memory codes typically used it is very unlikely that two paths
that split and remerge m or more stages later will both survive on the stack. It is thus
possible in practice to avoid the state merge checking.

Stack Management. For any finite list size (smaller than ¢), stack growth may
eventually exceed the memory size. To avoid severe penalties in performance, we simply
locate the worst as well as best paths following an extension and purge the poor con-
tenders when the memory limit is reached. A purged path that is presently poor might
eventually become the winner if the memory size were unlimited and the path was kept
in contention. However, with adequate sizing of the memory this is a rare event.

614 Trellis Codes Chap. 6

The stack sorting procedure is also of concern for large lists. To find the best
and g* — 1 worst entries in a list of N objects requires g*N comparisons. Jelinek [53]
proposed a simple scheme for avoiding the sorting complexity. We merely classify, or
quantize, extended paths according to metric bins, or “buckets,” and do not further sort
within buckets. The extension cycle extends any path in the best-metric bucket; if this is
empty, we proceed to the next bucket, and so on. We must keep the metric quantization
fine enough so that we do not extend slightly inferior paths too often. An alternative
is to sort for the best within the best nonempty bucket prior to each cycle, for this is
typically a much smaller number.

Computation Variability. Computation to decode a given message using the stack
algorithm (or Fano’s algorithm) is a random variable induced by the channel’s noise
mechanism. We typically measure the computational effort of a stack decoder by the
number of top-of-stack path extensions. It is known, for example [6), that for a large
code tree, the distribution for this random variable is

P(C > c)~ Ac™", ¢ an integer, (6.5.3)

for ¢ large, that is, in the tail of the distribution, with A a proportionality constant
dependent on packet length. This distribution is known as the Pareto distribution and is
notably heavy tailed. The exponent p in (6.5.3) is given by the solution to

Eolp) = pR, €6.5.4)

where Ey(p) is the Gallager function introduced in Section 4.4.

Given the probability mass function in the tail of (6.5.3), we find that the expected
number of computations is unbounded if p < 1.'' In-such situations, we must anticipate
serious delay due to large computation and memory overflow problems for continuously
arriving data. Thus, the critical rate R for finite expected computation is

R < Ep(1) = Ry, (6.5.5)

where Ry is the channel quality parameter introduced in Chapter 4. Because of this com-
putational significance, this parameter was originally designated, and still is by many,
the computational cutoff rate, Roomp, since coding with rate greater than this value sug-
gests decoding problems, on average, for a sequential decoder. Notice that we might
still successfully decode when R > Ry, particularly with shon packets, but the expected
decoder effort rapidly increases in this region. This is another justification for trymg to
engineer a moduiator/channel/demodulator that provides largest Ry.

Example 6.18 Sequential Decoding on a BSC

Suppose that we have a BSC available for coded transmission, with ¢ = 0.03. Use of the
Ro expression for the BSC developed in Example 4.7 gives

Ry =1-1logy [1 + (4e(1 - €))!/?] = 0.576 bit/channel symbol. (6.5.6)

This suggests that R = 1‘5 codes are feasible from a decoder computation standpoint. (A rule
of thumb seems to be that operating sequential decoders with R > 0.9Ry is 1o be avoided.)

Here the channel inputs and outputs are binary, and the per-symbol metrics calculated
according to (6.5.2) are 0.452 and —4.52 for the x = r and x # r conditions, respectively.

!'For any finite frame size, the computation is finite.

Sec. 6.5 Sequential Decoding and Feedback Decoding 615

It is possible to scale and round these real metrics to integer values, and in this case a good-
choice is +1 and - 10 for the two cases.

Let’s reprocess the received data of Example 6.12, corresponding to a rate % code
with memory 2 and a message length of L = 4 bits, terminated with two zeros. The binary-
quantized version of the data was (01, [0,00,00, 11,00). We will use the per-symbol
metrics listed previously, appropriate for € = 0.03, although the reception of four channel
errors in 12 bits is not very consistent with this model.

In Figure 6.5.2, we show the stack contents after sorting, listing the information
sequences (oldest bit on left) and the associated cumulalive metrics. Notice that the decoded
paih is eventually 101000, agreeing with the VA solution in this case, and that a total of
7 1op-of-stack node expansions was made, although the decoder’s next choice would have
been to retreat to an earlier-explored path of length 4. This compares with a minimum of
six extensions for a no-channel-error condition. Notice that the resolution of metric ties
influences the actual amount of computation here.

We might conclude that the stack decoder achieved the same result with far less
ceinputacion than the Viterbi algorithm, but the comparison is not easily made. First, this is
a short example. Second, stack sorting is not a trivial exercise. Finally, there is no guarantee
that the sequential decoder will produce the ML. path.

C; -9 1;-9 10; -7 101;-5
1, -9 00; -18 00; 18 00;-16
01;-18 01;-18 01;-16
11;-29 100; -27
11;-29
1010; -14 10100; -12 101000; -10 {(Done)
1011; -14 1011;-14 1011; -14
00; 16 00;-16 00; -16
01; -16 01;-16 01;-16
100; -27 100; -27 100; -22
11,-29 11;-29 11;-24
10101; -34 101001; -32
10101; -34

Figure 6.5.2 Stack evolution, Example 6.18, hard-decision metric: A(r. v) =
Lr=xi A, x)=—10,r #x.

Further discussion of sequential decoding, particularly pertaining to high-rate con-
volutional codes, is found in [55]. Figure 6.5.3 shows distributions of computation
in processing fixed-length frames for varying channel quality. Note that when the R,
parameter drops to near R computational effort increases dramatically,

6.5.2 Feedback Decoding

Feedback decoding is a procedure designed for hard-decision applications, say for a
BSC, and one which has fixed computation per decoded symbol. The essential idea is
that channel errors will produce a syndrome sequence when the parity check equations

616 Trellis Codes Chap. 6

256-Bit Frames
1 -
L LY
\‘ \\\
Y “
— \ N
= 1 ~
N b . >
@ \ \ Eb/No=4dB
S \ .
» A .
; \ \
3 \ “
w 01 |- \ “.
i =
S \ Eb/No =6 dB s,
o \
e % ®
a ‘\
001 .
L]
100 1000 10000

Branch Extensions, n

Figure 6.5.3 Distribution of computational effort. Sequential decoding with
hard-decision decoding, Ep/No varying.

of the code are tested, and as with linear block codes, a processing of this syndrome can
estimate whether a symbol error exists in a given position and repair it.

To begin, suppose the encoder is a rate % systematic feed-forward encoder with

memory order m. Let the channel error sequences be e}o’ and e;” on the information
and parity bit positions, respectively. Computation of the syndrome sequence in the sys-
ternatic case amounts to reencoding the received information stream (perhaps containing

errors) and adding this to the received parity stream, as shown in Figure 6.54. The

u
~(+) > »+o > Buffer + }—
o LITTT--]
P +
1
\‘}3 @ D S Shift 6%,
Register
Channel
Error
Estimator

Figure 6.5.4 Feedback decoder for Example 6.19.

Sec. 6.5 Sequential Decoding and Feedback Decoding 617

syndrome bit at a given time will be a modulo-2 sum of the error sequence in certain
positions. By collecting syndromes over a window of length L, > m, we can make
inference about the error sequence. Specifically, we can precompute a table addressed by
the 2£2 possible syndromes that outputs the single bit corresponding to the error estimate
in the information position at time j — Lp. (Notice the similarity with Meggitt decoding
of cyclic codes in this regard.) If we infer an error occurred in the given position, we
must patch the syndrome sequence to remove the influence of this suspected error.

The complexity of feedback decoding evidently resides in the table-lookup function,
and this procedure is feasible only when the table size is reasonable. Modern gate array
technology is one way to implement the required Boolean function.

The performance of feedback decoding is governed by the column distance function
at the depth corresponding to L 5. Specifically, if the column distance function equals 4
at depth L p, then a feedback decoder is capable of correcting

d—1
lieedback = \:TJ (6.5.7)

or fewer errors in the span of nL, bits influencing the syndrome sequence. Thus, for
these decoders it is clearly desirable to maximize d.(Lp) or, perhaps more to the point,
to minimize, over choice of encoders, the L, needed to achieve a given distance.

The procedure extends readily to systematic rate f codes and even to nonsystematic
codes. However, at least for delay L = m, we can find a systematic code capable of
achieving maximal column distance d.(Lp), so there is no apparent benefit to use of
nonsystematic codes. For larger decoding delay, nonsystematic feed-forward codes can
be superior, as we have claimed for free distance, but the decoder complexity in this
regime is such that Viterbi decoding should probably be adopted anyway.

Error propagation is a possible phenomenon with feedback decoding, for if a cor-
rect bit is mistakenly altered, the syndrome sequence is further corrupted. The error
propagation is, however, not indefinite provided that the decoder delay is at least m.
Further discussion on feedback decoding is given by Heller [56] (see aiso [50]).

Example 6.19 Feedback Decoding for Encoder of Example 6.5

In Figure 6.1.1b we showed a memory-5, rate % systematic encoder and described parity
check computation in Example 6.5. This encoder happens to have the largest attainable
column distance at depth 6, that is, 5. (This is also called the minimum distance.) This
distance information implies that the decoder is capable of correcting up to two errors in
the 12 bits residing in a decoder span of 12 channel bits.

We illustrated the syndrome former in Figure 6.1.7 and from this diagram can conclude
that the syndrome sequence is given by

o (), ())] (1)) (0)
s,_ef- +e’- +ej_|+ej_2+e

i—at e s (6.5.8)
Similarly, we can express each of the syndrome bits at times j — 1,...,j — 5, giving a
linear relation between these 6 syndrome bits and the 12 possible channel error positions.

To determine the decoding table, we assume that all errors prior to time j — 5 have
been repaired by previous decoding cycles, and thus these bit positions can be eliminated
from the syndrome equations. In this case, the resulting syndrome equations become

618 Trellis Codes Chap. 6

0}

(0)l + e(O)Z +e?, +\‘_,(0) ,

Si=e®@velre

0
Sio1=e® el +e®, 4 O, +e®,,

5, 2—~e(0)2+e“)2+e(m3+ fO) 659
ORI R) -
3+e 3+ _4te =5

(0)

Sj.3= ¢
0 !
s = e el el
0) 1)
§i-s -ej 5+e(!
Notice that a single error in e(ms. corresponding to the information position about to emerge
from the buffer, causes a syndrome pattern of (110111). We can show that the 64 syndrome

patterns divide into two distinct classes, a class for which we decide to change the bit r()5

and a class for which we do not. All single errors and double errors involving 91[1)5 are

attached to distinct syndromes in the first class, while single and double errors not involving
this bit are attachied to syndromes in the other class. (These errors will be repaired at a later
time.) The correction circuitry can be implemented as a 6-input, 1-output Boolean network.
It should be clear that this form of decoder is capable of operation at very high speeds.
Furthermore, by interleaving to appropriate depth, burst-error correction at high speeds is
quite feasible.

For small €, the cutput error probability can be approximated by

Py~ Céd (6.5.10)

where C is a multiplier factor, since some three-error events can cause a bit decoding error.

6.6 TRELLIS CODING WITH EXPANDED SIGNAL SETS FOR
BAND-LIMITED CHANNELS

From a classical perspective, coding for error control has implied an increase in spectrum
bandwidth in return for some decrease in required signal-to-noise ratio, the latter called
coding gain. The reason for bandwidth expansion is that the rate of the encoder output,
in symbols per second, is greater than the rate at the encoder input, assuming identical
alphabets, by a factor equaling the inverse of the code rate, R. Thus, rate . encodmg
increases the transmitted symbol rate by a factor of 2 relative to the uncoded symbol
rate. Furthermore, although any encoding (block or trellis structured) introduces statistical
dependencies into the output symbol stream, good codes are rather well approximated as
having output sequences that are independent, but at the increased rate. Thus, assuming
that both coded and uncoded alternatives employ the same modulator signal set, we can
infer that the spectrum of the coded signal is merely rescaled in frequency by the inverse
code rate, Usually, this is in fact exactly the case. This has led to a misunderstanding
that error-control coding couid only provide significant gains in energy efficiency when
the possibility of bandwidth expansion is present.

An aliernative viewpoint on coding was introduced by Ungerboeck {4], which
rather revolutionized thinking about coding and the effect on bandwidth. The general
topic is now referred to as trellis coded modulation, or TCM. Ungerboeck reasoned that

Sec. 6.6 Trellis Coding with Expanded Signal Sets for Band-limited Channels 619

the modulator symbol set could be enlarged when coding is adcpted, relative to that
needed by uncoded signaling, and redundant modulator sequences selected with memory
chosen from this largér constellation. If the signal set dimensionality per information bit
remains unchanged, then, to at least first order, the power spectrum remains identicai
to that of the uncoded signal. Surprisingly, perhaps, actual coding gains on the AWGN
channel can nonetheless be quite impressive, 3 to 6 dB. In hindsight, this notion was
waiting for all to exploit, foretold in the form of channel capacity and/or the Ry resuits
we have seen in Chapter 4! The key realization is that coding and modulation should
be performed with full attention to Euclidean distance between coded modulator output
sequences, without any particular attention to Hamming distance at the encoder output.
A comprehensive survey dedicated to this topic is [57].

6.6.1 Set Partitioning

The essence of trellis coding onto expanded signal sets involves the notion of set parti-
tioning. Consider a modulator constellation having M points in an N -dimensional space.
(Initial descriptions of Ungerboeck were restricted to one- and two-dimensional spaces.)
The constellations may be M-ary AM in one dimension, M-ary QAM or PSK in two
dimensions, or more generally any regular arrangement of points in N dimensions, such
as subsets of N-dimensional lattices. In the latter context, we refer to the process as
lattice partitioning.

We first partition the original set into p; equal-sized disjoint subsets, or cosets,
each of size M/p, points and denote these subsets A;, A2, ..., Ap,. This partitioning is
done so that within each subset the minimum Euctidean distance between signal points
is maximal for the adopted subset size and uniform across subsets. (This will always
be possible with initial constellations having standard symmetry, and if the constellation
is a lattice, the lattice Coset decomposition provides the recipe.) Next, each of these
subsets are further split into p, subsets, denoted B,. B, Proceeding recursively in
this manner, the original constellation may be eventually decompased into single-point
subsets. Typically, the splitting factors p; are equal, and often two, but this is not
necessary.

Three examples should serve to clarify set partitioning.

Example 6.20 Partitioning of 8-PSK

The 8-PSK constellation and its natural partitioning sequence are shown in Figure 6.6.1. In
each step, we employ splitting by two, so the subset sizes shrink by two, and we may notice
that the first level of partitioning produces two rotated QPSK sets, the next level produces
four binary PSK sets, and the final level has single-point subsets. The sequence of right/left
branches in the partitioning tree produces binary 3-bit labels to each of the original 8-PSK
points; clearly, there are many equivalent labelings, and we have selected one that amounts
to a natural binary progression as we move around the constellation circle. In effect, this
tabeling decision produces a mapping from binary 3-tuples to signal points, and Ungerboeck
dubbed this “mapping by set partitioning.” The actual labeling of signal points is not crucial,
however, until we proceed to build encoders and decoders.

More importantly, note as the partitioning proceeds the intrasubset minimum distance
increases from the 8-PSK distance to the QPSK distance, 10 the distance of antipodal signals.
The sequence of squared minimum distances is thus 0.585E;,2F,, and 4E,, where E, is

620 Treflis Codes Chap. 6

d? = 0.585F,

N .\thzbs)

Fd ~\
V4 A
» l.\
// . ~
7’ \\
by=0 1
rd N
Vd N
s S
’ N,
Ao Ay . .
- di=2E
I\ /1N
I AN Y
/ \ o / L]
/ \ 7 \
’ \ 0 II \ 1
= / A | \
b, 0, \ p \
7 \ / A\
7/ \ I:‘ \
/ \ \
Bol BZ \. B1 /o 0\83
/ \ , \
_.__‘_._ __x_ 2 i\
! ! d2= 4, rﬂ !
\ \ \ \
I\ /A o iyt
I I Iy [
Iy Iy P 1
by=01 v 1 01 v 1 ! \ ! 1
! \ ! \ ! A / \
f \ ! \ ! 1 / \
i \ i \ i \ ! \
G! C Gt Ce G le Cs 1 C gy
! 1 ! \' 42-8E [\ ! \
[1 { 1 3= s ! [! I
L] L J []

Figure 6.6.1 Set partitioning for 8-PSK with associated bit labeling.

the energy attached to each symbol. We can attach infinite intraset distance to singleton
sets.

Example 6.21 Partitioning of the Two-dimensional Lattice Z2

Another important example is that of partitioning the two-dimensional integer lattice Z2,
which we shall illustrate with 16-QAM. Figure 6.6.2a depicts the partition sequence. Notice
here that the progression of intrasubset squared distances increases by 2 at each partition
level, according to 442,842, 1642, ..., where 2a is the constellation spacing along each
signal-space axis. In Figure 6.6.2b, a similar partitioning is depicted for the 32-cross con-
stellation. Notice that the same progression of minimum distance occurs, and the sets have
the same size at all levels, but the subsets are not congruent. This is no real issue, however.

Example 6.22 Partitioning of the Four-dimensional Lattice Dy

We recall from Chapter 3 that the best lattice packing in four dimensions is produced by
the lattice arrangement commonly designated Dy. The easiest recipe for this lattice is to

Sec. 6.6 Tralis Coding with Expanded Signal Sets for Band-limited Channels 621

L] * -* L]
[[] l [] L]
d02=482
L [] I [] L J
L] * L] []
/ hY
/ A 4
/ \
0 v
/ N
7/ \
. . . .
Ao A
d12=882
/
.f, \\ L] * 7 \\.
/ \ / \
/ Y / \
. / o\ I \ .
/ \ / \
! \ ! \
/ \ / \
0/ (S / \
/ A / \
/ \ / \
/ \ /
BO . / . \ BZ . B'l / . \ 83
" . . .
d22= 16a?
e v fly o Iy e M
i ! [} !
\ \ \ \
! { ! ol .
\ . \ e \ \
I I P I
0/ \ 1 i \ ! \ 1 \
I / ! !
\ 1 \ \
/ !] !
\ \ 1 \
! ! ! i
\ \ \ \
i) I !
/ \ / \ ! \ / \
. \ \ . \ \
. . . .
d33=3232 e ® | | I | o o
. e .o | |
. . - .
Co C G Cs G G G G

Figure 6.6.2a Set partitioning for 16-QAM.

consider the lattice points, or signals, to be all combinations of four-tuples of the form
(x},x2.x3, %5 | Zx; = 0,mod2). To center this lattice at the origin, it ts common to
translate the lattice by adding the vector (4,0, 3.0) to each point.

In Chapter 3, we constructed a 256-point constellation by selecting low-energy vec-
tors from this translated lattice. In an uncoded system, B bits could be communicated by
transmission of one of these four-dimensional signal points. If we wish to apply trellis
coding to this modulation option, however, we can proceed to partition the 256-point set.
It is known that D4 partitions into four scaled and rotated copies of itself; that is, wpon
four-way division, each subset has the same geometry as the parent set. Thus, the 256-point

622 Trellis Codes Chap. 6

bi=0..00006.-. bi=1
ALl eIl LA
Tetoc0. et eNTd =V24d,
+ . Q0D 0 1000
. ..0s0-0.
«c v Q00 D QO
e s QD -
bi=0 by=1 b:.=}o/ 3=
B B Byo Bs
%oo -?-?--2 1o-o o ?o‘-_d2="’4do
...... 0:+0-0 “ v e e e [} o+a.
[»] o".o S P °'+°'0 [LI} .
...... o‘o [+] o O
b,’,-O/ \b,?,=1 bi= 0/ \b2-1 b,‘,‘-O/ \bz—T bE = 0/ \b’—1
..q PO st et f—d3=\18do
5"*:{,"’&:"? ..° BN I.;'.':;':'{,Z'?.f*.'?:.:.'*.::
.............. 0. O ev@ »t o sseosausy «o@o .0 .0
PN - B = s O A . LRI LI« I O = = LY LRI
Co C4 Cz Cs C1 CS C3 C7

Figure 6.6.2b Set partitioning of the 32-CROSS signal set.

canstellation divides into four 64-point Dy subsets, and these generate sixteen 16-point sub-
sets, and so on. Each time this division occurs, the minimum intrasubset squared distance
increases by 2.

Here is the essence of trellis coding for band-limited channels, schematically de-
picted in Figure 6.6.3. We begin with a desire to communicate k bits per modulator
symbol and adopt a modulator constellation that is slightly bigger than 2*. (Often, the
size is exactly 2**' and we speak of expanding the constellation by a factor of 2 over
that needed for uncoded transmission.) Next, we adopt some & < k to be the number of
input bits that enter the encoder and influence part of the state. This leaves k — k bits
as uncoded bits. The encoder is typically a binary convolutional encoder, which adds
r = 1 bit of redundancy, producing & + 1 output bits.

2'-state FSM
Encoder N
Subset | !ndex for One of 2%+ Subsets in N Dimensions,

k Selector ﬂ Each of Size 2%-¥

>t

{Bits) K-k Constellation | 1o Modulator
Point p————t
Selector Si

Modulator Has 257 Points in N Dimensions

Figure 6.6.3 Generic trellis coded modulation structure.

Sec. 66 Trellis Coding with Expanded Signal Sets for Band-limited Channeis 623

To marry this encoding with the modulator, we partition the original modulator
constellation to obtain 2¥*! subsets, ¢ach with 2*~* points. (Note that the total number
of points in the constellation is thus 2¢+!)) Furthermore, the subsets are labeled by a
vector of k + 1 bits produced by the encoder, and we may say the encoder has chosen a
subset for modulation. The label is exactly the & + 1 highest bits on the set partitioning
tree; that is, the encoder specifies the modulator input bits by, ba, ..., b; 4 at time j§.
The remaining & — k uncoded bits then merely select a member of this chosen subset
for transmission. To put this another way, the coset sequence selection has memory
and redundancy, but the selection of a point within a coset does not. These signals are
relatively easy to distinguish in noise, however.

Obviously, there are several design factors, including the division of input bits
between the two paths, the encoder memory, and the modulator constellation type. These
distinguish different TCM schemes.

6.6.2 Hand Design of Codes

Simple trellis codes may be designed by hand and already offer impressive coding gains.
This design recipe is not suggested for exhaustive code studies, but is an important
illustrative tool. The procedure begins with selection of a trellis size measured in number
of encoder states. We denote the trellis size as S = 2°, so v again corresponds to the
number of binary memory elements in the trellis encoder. We also specify a throughput
k in units of bits per trellis level. Thus, 2 is the number of trellis branches leaving and
merging with each trellis state. These total number of arcs can be allocated in several
ways in general. For example, if k = 3, the eight required graph transitions could be
divided as eight single branches, four groups of two, or two groups of four. These choices
correspond to k=3,2and]1, respectively. Knowing which is bes: is not immediately
obvious, but given a trial choice, we merely assign constellation subsets of proper size
10 these various state transitions. Ungerboeck proposed some heuristic design rules that
have basically withstood more general attacks allowed by computer search. These rules
are as follows: -

1. Employ all subsets equally often in labeling the trellis.

2. For subset assignments that share a common splitting state or merging state, choose
subsets between which the minimum interser distance is largest.

(For small trellises, where subsets are assigned only once each, it can be seen that rule
2 cannot generally be satisfied.) These rules still allow considerable latitude in labeling
of a large trellis, pointing to the need to examine many codes.

Example 6.23 4-State Code for k = 2, 8-PSK

This is the archetypal example of trellis coded modulation, supplying the same spectral
efficiency as uncoded QPSK, but with roughly 3 dB coding gain. The throughput is & = 2
bits per modulator symbol, and a convenient expanded constellation is 8-PSK. The requisite
number of branches per trellis state is four, and we propose to assign branching as two sets
of two, as shown in Figure 6.6.4. With reference to Figure 6.6.1, this means that antipodal

624 Trellis Codes Chap. 6

]
[]
*

Figure 6.6.4 Trellis labeling for
. » s 4-state, 3-PSK code. Subsets have
size 2.

signal sets Bg, By, B2, and B3 will be assigned to various state transitions. Also, this choice
has adopted & =k =1, so one of the input bits is left uncoded.

Because there are four antipodal subsets in the constellation and the graph requires
eight subset assignments, each subset will be used exactly twice. Following rule 2, we
assign as subsets to trellis branches leaving (or merging to) common states those that differ
by a 90° rotation. This ensures that the minimum distance between subset members is
maximized for the initial and final stages of multistage error events.

Perhaps the most intriguing aspect of this trellis code design is the presence of paralle!
transitions; that is, any given state can transition to its next-state mates by two paths in this
case. An immediate corollary is that single-step error events are possible in ML decoding.
We did not find this in the case of standard binary convolutional codes, which were designed
for maximum Hamming distance, principally because the free Hamming distance could
otherwise never exceed n, the number of output symbols per shift time. Under the criterion
of Euclidean distance maximization, however, parallel transition designs are common, at
ieast for relatively small trellises, and for large £.

It should be clear that this example code, and generalizations following Figure 6.6.3,
are finite-state codes, amenable to decoding by the Viterbi algorithm. The only novel
aspect to be incorporated in decoding is the possibility of paraliel transitions, but this is
simply incorporated. The principle of optimality is satisfied if we do decoding in two
steps:

L. In each subset, find the most likely constellation point to have produced the given
observation and call these subset winners.

2. Perform standard trellis decoding using only these subset winners and their maxi-
mum likelihood metrics.

In other words, decoding can be implemented with a standard trellis decoder having 2¢
arcs entering and exiting trellis states, preceded by a subset preprocessor that supplies
subset winner information.

For such.a decoder, many types of decoding error events are possible, and we again
need to enumerate the various Euclidean distances, the number of sequences having these
distances, their information weight, and so on. For high signal-to-noise ratio, the Jree
distance of the code, defined again as the minimum Euclidean distance between any
two distinct coded sequences, is the principal figure of merit. To determine the free
distance of the code in Example 6.23, we observe that the Euclidean distance between
single-step detour events is d7 = 4£,. (This holds regardiess of the transition we study,
by symmetry of the subsets.) Two-step error events are not atlowed by inspection of

Sec. 6.6 Trellis Coding with Expanded Signal Sets for Band-limited Channels 625

the trellis, but three-stage and longer error events are possible. The minimum distance
among all three-stage error events is

di = 2E, + 0.585E; +2E, = 4.585E,. (6.6.1)

It may be shown by exhaustion that all longer error events have still larger distance.
Thus, we find that the free distance of the code is dominated by one-step error events,
and

df =4E, (four — state code, 8 — PSK). (6.6.2)

Since each code symbol carries the energy of rwo information bits, £; = 2E,, and
thus d} = 8E,. The two-codeword error probability for this free distance error event is

Q[(df2 /2Ng)'#2}, which is exactly 3 dB more efficient in energy utilization than uncoded
PSK/QPSK.

As with conventional binary convolutional codes, we can adopt a union bound
approach to computing performance, say node error probability. We can count that for
any transmitted path in the trellis,’? there is precisely one single-step error event, four
three-step events with squared distance 4.585E;, and so on. The multiplicity of four
follows from two neighbors in each subset at squared distance 2E, on the split and
merge segments, but only one neighbor with squared distance 0.585E; on the middie
segment of the three-step event. Thus, the first two terms in a union bound for node
error probability are

2N [a "
el (3) el

- - L

(6.6.3)

p— -

IRTZIANE 4.585E,\ '
= (Hﬁ;) _+4Q|_(No) *

This points to an asympiotic coding gain, relative to uncoded QPSK that has the same
bandwidth equaling 3 dB. Note that nonfree-distance events may have only slightly larger
distance and thus contribute significantly to error probability at moderate SNR.
Furthermore, because there is only a single (uncoded) bit error attached to the
dominant single-step error event, the bit error probability is given asymptotically by

4EN\ "
Pth[(w—(‘f) } (6.6.4)

Again, this is precisely 3 dB superior to uncoded QPSK.

We recall that our original trellis architecture was chosen to have two-sets-of-two
branching. An alternative possibility has four-sets-of-one branching, for which single-
peint subsets would be assigned to each state transition. Now, the one-stage error events
disappear, but it can be found by trial and emor that any assignment of points to the
trellis leads to a two-stage error evemt with distance dz2 = 2.585E,, and thus this trellis
structure is suboptimal. This provides a convenient point to mention that the best binary

'2This symmetry condition will hold whenever we are dealing with a design involving a uniformly
partitioned constelation and a convolutional encoder.

626 Trellis Codes Chap. 6

Hamming distance code with R = % has trellis structure identical to the latter choice.
Even with the best assignment of §-PSK points to output 3-tuples, we produce an inferior
code for the AWGN channel by taking an optimal binary Hamming distance code and
mapping the code vectors onto the modulator set.

If we consider the design of 8-state codes, it should be obvious that, if we hope
1o have increased free distance and thus larger asymptotic coding gain, something must
be done to rid the trellis of the dominant one-stage error events. Now, the way to do so
is to switch to four-sets-of-one branching. Correspondingly, k = k = 2 for this design,
since both input bits influence the state vector. A little experimentation with possible
subset labelings will show that the free distance can climb to df = 4.585E,, producing
another 0.6 dB of asymptotic coding gain.

A final remark that is apparent from this design is that only the pattern of constel-
lation points assigned to the trellis is important in establishing performance, and not the
actual bit labels attached to constellation points. This labeling enters the picture only
when we design encoders. If the constellation points in 8-PSK are labeled with a natural
binary progression around the circle from the zero-phase position, it is readily shown
that the encoder of Figure 6.6.5 implements the desired encoding operation. Notice that
one input bit forms a subset selection by specifying the two least-significant bits of the
label, while the uncoded bit picks one of the two antipodal signals in a subset. If the
labeling is changed to Gray-coded labeling or some other labeling, the encoder must be
changed accordingly.

u}"’ bi
by
— 8PSK ™
u‘(N
by

Figure 6.6.5 Feedforward encoder realization of best 4-state code for 8-PSK.

Example 6.24 Trellis-coded 16-QAM with k = 3 Bits/Symbol

Figure 6.6.2 illustrated set partitioning for the 16-QAM constellation. The best four-state
code for sending k = 3 bits per symbol using 16-QAM uses & = 1 coded bit 10 produce a
2-bit subset label for subsets of size four [4]). The remaining two input bits then select a
point from the selected four-point subset. Figure 6.6.6 shows the appropriate trellis diagram:
there is obvious similarity with that of the 4-state code for 8-PSK, except that the subsets
have size 8 here.

Again, we will find that the single-step error events are dominant in the free-distance
study. The minimum squared distance between members of these four-point subsets is 16a2,
assuming that 2¢ is the along-axis spacing in the constellation. The three-step error events

Sec. 6.6 Trellis Coding with Expanded Signal Sets for Band-limited Channels 627

Figure 6.6.6 Trellis labeling for 4-state, }6-QAM code. Note similarity with
+-state, 8-PSK design. Subsets have size 4.

can be shown to have squared distance at least 20a%. Recalling that the average energy per
symbol in 16-QAM is 10a2, as calculated in Chapter 3, and that E; = 3£, here, we find
d} = 4.8F). The leading term in the union bound for error probability is then

172
24E
P20 [(Nﬁ”) :I , (6.6.5)

which is 4.4 dB superior to the performance of uncoded B-PSK, a system that has the same
spectral efficiency. (The multiplier 2 accounts for the fact that each transmitted sequence
has two nearest-neighbor one-step error events.)

As mentioned, the trellis structure for this code matches that of the previous example,
meaning that the convolutional encoder portion of the system is identical. We merely have
one additional uncoded bit. To generalize, if we wished to send 7 bits per interval using
a 256-QAM constellation, we would use k = 1, with 6 uncoded bits. Subsets are size 64
here. All this pertains to 4-state codes.

Referring to the generic system in Figure 6.6.3, the design questions are, for a
given k and S, as follows:

1. What constellation should be used?
2. What is the proper & (or what form of trellis branching should be used)?

3. What is the best subset labeling pattern for the trellis or, equivalently, the best
encoder?

Regarding the constellation issue, certain engineering constraints may diclate part
of the answer. For example, codes with constant energy per transmitted symbol may
be important. This -might augur well for M-ary PSK modulation. Of more interest is
the necessary constellation size. Ungerboeck [4), using information-theoretic arguments,
argued that expansion by a factor of 2 is adequate for two-dimensional constellations; that
is, if uncoded modulation requires an M -point QAM constellation, the coded system will
operate effectively with a 2M-point QAM constellation. In so doing, the dimensionality
per information bit remains unchanged, and, to first order, so does the power spectrum.
In Chapter 4, we encountered this basic idea: a look at Ry curves for two-dimensional
constellations will show that 8-point constellations are adequate, in the information-
theoretic sense, to support reliable communication with R = 2 bits per symbol. Likewise,

628 Trellis Codes Chap. 6

k<

good 16-point constellations are adequate to fashion good codes with 3 bits/interval. This
constellation doubling theme carries over to higher-dimensional cases as well and allows
the constellation expansion, per dimension, to be smaller than 2, a helpfui fact for modem
designers [58].

Larger-complexity codes have been found by computer search, combining binary
convolutional codes with “mapping by set partitioning” to select modulator points. That
is, we can adopt the labeling implied by the set partitioning process, and exemplified
in Figure 6.6.1, and then search over the class of binary convolutional encoders with §
states, determining the free distance for each such cede. As earlier claimed, any feed-
forward nonsystematic convolutional code can be realized as a linear, systematic encoder
with output feedback, in the sense that the two systems produce the same space of code
sequences. Since systematic encoders are inherently noncatastrophic, it is convenient
to search the class of encoders having feedback. (This also slightly reduces the search
class.)

Systematic encoders with feedback are specified by listing parity check polynomials
W (D) =hh+h\ D+ -+ KDY, fori =0,1,... k. Forencoders with only # coded
bits, we will have that &' (D) = 0.k < i < k [4], which says that the uncoded bit
sequences need not obey any parity constraints. Figure 6.6.7 illustrates the generic
encoder in this form, in particular showing that only k — & inputs influence the state
vector.

To illustrate the specification of encoders in this form, the encoder that is optimal
for a set-partitioned 8-PSK constellation and four-state trellis Example 6.23 is specified

by
WD) =1+ D?, h' (D)= D, (D) = 0. (6.6.6)

1

-
ad]

_ Figure 6.6.7 Generic 2"-state encoder in systematic form with feedback.

Sec. 66 Trellis Coding with Expanded Signal Sets for Band-limited Channels 629

