what happens as M continues to grow. By careful limiting arguments, we may indeed
show that as M increases without bound the probability of symbol error witl be arbitrarily
small as long as E;/Ng exceeds log, 2 = —1.6 dB, the channel capacity limit for the infi-
nite dimensionality channel developed in Section 2.9. (The interested reader is invited to
pursue the derivation of this result in Exercises 3.3.9 and 3.3.10.) Thus, orthogonal signal-
ing represents the first constructive signaling scheme we have encountered that operates
arbitrarily near channel capacity for the infinite-bandwidth AWGN channel. However, it
cannot be said to represent a practical solution to this objective for two reasons. First, the
complexity, measured by the number of correlations needed per bit transmitted, grows as
M /log, M, and this is relatively large already for M = 64. Likewise, the dimensionality
of the signal set, per bit transmitted, grows at the same rate, and thus orthogonal sets
imply very large bandwidth. Referring to Figure 3.3.17, we see that, even for M = 64,
the E,/No needed to achieve P; = 1073 is roughly 6.5 dB, still some 8 dB away from the
capacity limit, although this is a sizable improvement over binary orthogonal signaling.

If the messages to be communicated are actually just binary data, with M-ary
signaling used to transmit m bits per symbol, where M = 2™, then bit error probability,
Py, may be ‘of more interest than the symbol error probability. For orthogonal signaling,
these two are easily related combinatorially, Given that an error is made, then the M — 1
incorrect choices are equally likely, by symmetry of the signal space. Consider any bit
position in the m-vector that labels signals, say the first position. Of the M — 1 error
possibilities, exactly M /2 differ in the first (or any) bit position, and thus

M .
P = — - P.. WS
’ AM-1) "’ ©34D

For large M, P, approaches P, /2. In fact, for any M ﬁ'e have the bounds
P,
—z—s < P, < P, (3.3.42)

so that bit error probability. curves are only marginally different from symbol error prob-
ability curves-at typical error rates.

M -ary Biorthogonal Case

Closely related to orthogenal signal sets are biorthogonal sets, obtained from the
former by augmenting with the negatives of the signals. Thus, an M -ary biorthogonal
set can be viewed as the union of an (M /2)-ary orthogonal set {s;(t),i = O, 1,...,
(M /f2) — 1) and the complementary set {—s;(f)]. Demodulation is accomplished by
correlating with all members of either orthogonal set and then finding the signal with
the largest magnitude. The sign of this correlation reveals whether the decision should
be in favor of an index in the correlating set or an index in the complementary set.
Figure 3.3.18 depicts the receiver structure.

The principal advantages of such a construction rclanvc to the orthogonal case are
the following:

1. The number of correlators or matched filters needed to implement the optimal
receiver for biorthogonal signals is only M /2.

2. The signal-space dimensionality is M /2, implying half the spectral bandwidth that
a similar orthogonal construction requires,
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Figure 3.3.18 Biorthogonal receiver (note M /2 channels).

3. We gain in energy efficiency over the orthogonal design, much like binary antipodal
is more efficient than binary orthogonal. (For M large, however, the saving is
minor.}

To evaluate performance, we again assume that message Sy is transmitted. Then our
decision is correct if yp > O and |y;] < yo foralli = 1,2,..., (M/2) — |. Recall again
that the r.v. Y is Gaussian with m = 2E,/Ng and o? = 2E,;/Ny. Also, Y;,i # 0, are
Gaussian with zero-mean, but the same variance as before, and are jointly independent;
so we have that the probability of correct decision is

o0 Yo M2y
P(C) = f £ 01S0) { FO01S0) dy.] dyo
0 e (3.3.43)

% p=Go-m)’ 20’ M2
= [ “oran 1= 200001 dy,

Again, we must resort to numerical integration. The symbol error probability Py =
1 — P(C), is shown in Figure 3.3.19 as a function of £,/Ng for varying M. Tables are
found in [12] as well.

Once again we find that as M increases the energy efficiency improves steadily,
and comparison of Figures 3.3.17 and 3.3.19 will reveal that bicrthogonal sets are su-
perior for all M, especially so for smaller M. Given the advantages we just cited for
biorthogonal signaling, there now may seem to be no justification for selecting orthogonal
designs. However, we have implicitly required with biorthogonal signaling the ability
of the receiver to distinguish s; (t) from its complement, which in the carrier modulation
case implies a phase synchronization operation. As we will see in Section 3.4, orthog-
onal signals may be detected noncoherently {without phase synchronization) with only
minor energy penalty. Furthermore, it may simply be infeasible to physically realize
the complement of one signal. An example is optical communication, where orthogonal
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Figure 3.3.19 Symbol error probability for coherent detection of biorthegonal
signals.

PPM is relatively easy to implement by pulsing a laser on or off, but synthesizing the
negative of one of these pulse signals; that is, achieving a 180° optical phase shift, is
more difficult.

Regarding the bit error probability for blonhogonal signaling, we note that there
are now two types of error events, conditioned upon transmission of message So:

Case 1: Choosing — 35, rather than Sy (one possible event)
Case 2: Choosing one of the M — 2 signals orthogonal 10 Sy

Conventional bit labeling would assign the antipodal signal pairs with complementary
bit labels. If case 1 occurs, all bits are decided incorrectly, but given the relatively
large signal-space distance between antipodal pairs, it should be clear that this case is
relatively rare. For case 2 situations, there are M — 2 equally likely decision errors,
and, of these, (M — 2)/2 have bit discrepancies with §p in any given position. At all
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reasonable signal-to-noise ratios, the case 2 events are far more probable. Thus, for M
large, we again have that P, approaches P, /2. In any case, the upper and lower bounds
of (3.3.42) remain valid.

M-ary Simpléx Case

A simplex design, sometimes called a transorthogonal signal set, is obtained from
an orthogonal set by translating the M-dimensiona! consteltlation so that its center of
mass s at the origin and then realizing that the new constellation can be rotated into
an (M — 1)-dimensional coordinate system. Translation and rotation do not affect the
probability of decision error, but can reduce the energy requirements slightly, in addition
to reducing the signal dimensionality per bit.

Letting s; denote the orthogonal set signal-space coordinates and s; denote the
translated coordinates, we have (prior to final rotation)

1 M1
S =8 =0 3 (3.3.44)
j=0

For M = 2, the simplex constellation is the antipodal design; for M = 3, the
simplex constellation is formed by the vertices of an equilateral triangle; for M = 4, the
simplex constellation is formed by the vertices of a regular tetrahedron; and so on.

By taking the Euclidean norm of each vector in (3.3.44), we can show that each
new signal has energy given by E; = E,(M — 1)/M (Exercise 3.3.12). Hence, with
this simple energy correction, orthogonal signaling performance results may be used to
evaluate simplex designs.

Another interesting property of the simplex design is that the normalized correlation
between signals, which is equivalent to the normalized inner product in signal space, is

T
§; - §; -1

Ajj = = ,
/ (EJ;ESJ‘)!/z M — ]

(3.3.45)

which is the algebraically smallest correlation that can be uniformly achieved over an
M-ary set of waveforms. If we view negative correlation as a useful attribute in de-
ciding between two signals, the simplex would seem to provide an optimal (minimum
error probability) signal design for a given M and E,/N,, when dimensionality is uncon-
strained. The strong simplex conjecture, that the simplex provides the minimum error
probability signal set under an average power constraint for the AWGN channel, has
recently been invalidated by Steiner [18]. However, the construction does supply the set
with Jargest minimum distance between signal points and minimizes the union bound
on error probabilify under an average energy constraint. With all signals constrained to
have equat energy, it is still conjectural that the simplex minimizes error probability at
any SNR.

We conclude the discussion of orthogonal, biorthogonal, and simplex sets with an
example for M =8,

Example 3.6 M = 8 with Fixed E;/N,

Suppose a communication system operating over an AWGN channel can supply Ep /Ny =
5 dB = 3.16. We consider 8-ary signaling, which means that, should we require it,

184 Modulation and Detection  Chap. 3



E;/No = 3.16 (log, 8) = 9.48 or 9.8 dB. Reference to Figures 3.3.17 and 3.3.19 produces
P, =6.5-103 and 5.8 1073, respectively, for orthogonal and biorthogonal designs. An
B-ary simplex can be evaluated by entering the orthogonal curves at ; times the available
Ey /Ny, producing P, =3.0- 1073, ‘

To form the signal set, we might utilize the Hadamard construction. The Hadamard
matrix of order 4 is

o li %)-

1 1 1
-1 1 -~
1 -1 -1
-1 -1 1

and these four rows plus their complements form an 8-ary bioithogonal set. The selected
row could be sent as a rectangular pulse train having duration T; = T}, logy M = 3T,.
The Hadamard matrix of order 8 is

Hy H
Hy = [H4 —l‘h]' (3.3.47)
and its 8 rows are the chosen signal patterns for the 8-ary orthogonal set. Note that in the
latter the first element in all rows is 1, meaning this signal element lends no distinguishability
to the signal set and can be eliminated with no loss in performance. Doing so allows
lowering of the energy per bit to % of the former value, while maintaining dyy,;, fixed and
thus achieving the same error probability. Also, it is clear that the dimensionality of the
set is reduced to seven (for example, we can use seven nonoverlapping pulses as the basis
functions).

(3.3.46)

b

3.3.4 Detection of M-ary Phase Shift Keying (M-PSK)

M-PSK is perhaps the generic form of modulation most widely utilized in contemporary
practice, ranging from voice-band modems to high-speed satellite transmission. As the
name suggests, the signal set is generated by phase modulation of a sinusoidal carrier to
one of M equispaced phase positions. The M signals are described by

2EN\'? 27
si(t) = (Ts) cos (w(r+—~;i), i=0,1,....M~1, 0<(<T,
(3.3.48)
with E; denoting the energy per symbol and w, denoting the carrier frequency in ra-

dians per second. As noted earlier, two basis functions are sufficient to generate this
set:

2\ 12 2\ /2
oty = (—) cos{w.t) and 1) = (—) sin(a)(-t). (3349)
T, T;

If M = 2, we have binary phase shift keying (also BPSK or simply PSK), an
example of an antipodal set. When M = 4, we refer to this modulation as quad-
riphase shift keying,'> which we observe also constitutes a biorthogonal set. For
any M, It/l;e signal constellation consists of M points equally spaced on a circle of
radius E;’°,

"2Also referred to as quadrature-phase-shift-keying, QPSK. or 4-PSK.
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This modulation scheme, or minor variations of it, is frequently employed in prac-
tice for several reasons:

1. The signals are easily formed using discrete phase shifter technology; in the case
of M = 2 and M = 4-PSK, the synthesis can be done by sign modulation of a
carrier or quadrature versions of the carrier.

2. The signals have constant amplitude (at least if unfiltered) and therefore may be
amplified by nonlinear devices without significant distortion penalty. Such nonlin-
ear amplifiers are typically found in satellite and terrestrial power amplifiers in the

form of traveling wave tubes, klystrons, and semiconductor amplifiers operated in
saturated mode.

3. Bandwidth conservation is afforded if M is large, since the dimensionality per

bit transmitted becomes smaller with increasing M. This is in exchange for an
increased signal-to-noise ratio requirement, however.

The simplest form of the optimal demodulator is a two-channel correlator using
phase-quadrature versions of a synchronized carrier reference (see Figure 3.3.2). The
received waveform, r(z), is projected into two-dimensional signal space, as shown in
Figure 3.3.20, and decision regions {or nearest-neighbor zones) are pie-shaped sectors
with angular extent 27 /M radians, centered on the various signal points. These re-
gions are shown in Figure 3.3.20 for M = 8, called 8-PSK or octal PSK in the litera-

ture.
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Figure 3.3.20 M-PSK demodulator in basis function form and decision zones
for M =8
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By inspection of the signal-space symmetry, the probability of correct decision,
conditioned upon transmission of §;, is independent of i. Thus, consider P(C|Sp):

F(ClS0) = P((Ro. R1} € DolSo) = P(IR1] < Ry tan(r /M )|So)

oo e—(rg—mj2/02 ro tan(r /M) e—ffﬂ02 (3.3.50)
= 2]; ___(2;[—0-2)”2 fO —_(27‘!'0'2)‘/2 d!‘l dro =1- P,,

where m = E;' and 62 = Ny/2. For M = 2, this expression collapses to P, =
QI(2E;/Ny)'"?], as we eartier found for antipodal signaling. For Jarger M, we must resort
to numerical integration of (3.3.50) or to bounding techniques. Numerical results are
shown in Figure 3.3.21 for various M as a function of E; /Ny, taken from tables in [12].

In sharp contrast to the situation with orthogonal signals, for M-PSK the required
energy-to-noise-density ratio increases with M, which is not surprising if we realize that
for every doubling of M the distance between points on the circle is approximately

107
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Figure 3.3.21 Symbol error probability for coherent detection of M-PSK.
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halved, even after allowing for E; = E,log, M. Thus, doubling of M projects a
6-dB loss in energy efficiency when M is large, and Figure 3.3.21 begins to reveal
this trend.

The bounding procedures described in Section 3.3.2 can be easily and accurately
applied to the M-PSK situation. The probability of symbol error is certainly greater than
the probability of error in deciding between a given signal and one of its nearest neigh-
bors. Since this distance is 2(E, %) sin(x /M ), we have from (3.3.28b) a lower bound:

172
P, >0 [(2:;) sin %J (3.3.51a)

On the other hand, since D! is the union of rwo half-spaces in two dimensions, each
defined by a nearest-neighbor decision problem, we have an upper bound from (3.3.34):

12
P, <20 [(i‘) sin %J (3.351b)

Expressing (3.3.51a) and (3.3.51b) in terms of E, /Ny, we obtain

2E, _211/2 25, _21:/2
9] ({W;-(logz M) sin M] ) < P, <2Q ([ No (log, M) sin M] - (3.352)

We have rather tightly bounded the true error probability to within a factor of 2, as
was first shown by Arthurs and Dym {14). Furthermore, at high signal-to-noise ratio,
inspection of the error region-would suggest that the upper bound is quite accurate,
particularly so as M increases, since the doubly counted region in the plane becomes
small. To demonstrate this, we consider M = 8 phase shift keying, with E, /Ny = 10dB.
In [12], the actual P; from numerical integration of (3.3.50) is given as 3.03 - 1073, On
the other hand, substitution into the upper bound (3.3.52) gives P; < 3.08 - 107,

Equation (3.3.52) explicitly displays that the energy efficiency, relative to antipodal
signaling, is

. n
numesk = (log, M) sin’ o (3.3.53)

which drops by roughly 6 dB for every doubling of M, when M is large.

We may also be interested in the bit error probability associated with M -PSK trans-
mission. In contrast to the situation for crthogonal signaling, the bit labeling is important
to consider here, since certain error events are much more dominant than others. Specifi-
cally, the nearest-neighbor errors are the most likely, while the antipodal error events are
very rare at high SNR. This suggests the use of Gray-coded labeling, wherein adjacent
signal points have bit labels that differ in as few bits as possible, that is, one. It is possible
to do this for any M = 2", Gray coding of 4-PSK and 8-PSK is listed in Figure 3.3.22.

Under the approximation that only adjacent symbol errors occur, which is in-
creasingly true as E/Np increases, the bit error probability, P,, can be taken to close
approximation as P/ log, M, since adjacent errors induce only one bit error in log, M bit
positions, and over uniform choice of transmitted signals, this bit error appears uniformly
in all bit positions.

As a point of special interest, the bit error probability for 4-PSK is exactly the same
as that of binary PSK when they are compared at equal E;,/N,. This may be argued by
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realizing that with Gray coding, each information bit is resolved in a binary test of one
half-plane against another. The distance to the decision boundary is (E, /)12 = E,iﬂ ,
giving -
2E,\'?
Py=0Q oA , QPSK, Gray coded, AWGN (3.3.54)
0

Despite this equivalence in energy efficiency with binary PSK, 4-PSK signals occupy
onty half the spectrum that binary PSK occupies for a given bit rate,'* producing one of
those rare occurrences of somethinig for (almost) nothing! Consequently, QPSK has
become the base-line technique for a myriad of digital satellite systems. The only

significant penalty factor is an increased sensitivity to carrier phase synchronization
efTor.

Differential Encoding and Decoding of PSK

Demodulation of PSK signals as described presumes a synchronized local phase
reference in the receiver, because information resides in the absolute phase angle of
the carrier relative to et radians. Usually the carrier synchronization process has an
M-fold ambiguity, that is, the phase estimate produced by the synchronizer can be
the correct phase, or one or M — 1 equally likely other estimates spaced by 2m/M
radians in phase angle. This can be disastrous for detection performance, even with-
out the addition of noise. One possible solution is the periodic inclusion of a known
pattern in the message sequence to resolve the ambiguity, but this is inconvenient

I3This is because the orthogonal bases cos(e,t) and sin(e, 1) can be independently modulated and occupy
the same spectral region thal modulation of either alone would occupy.
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and consumes energy and bandwidth, so we consider a simple means to operate in the
face of such possibilities, referred to as differential encoding and decoding.
At the modulator, we let the current phase angle 8, be determined recursively by

6, = 0,_, +x,.—2;;, " modulo 27, (3.3.55)

where x, € {0,1,..., M — 1} is the modulator input at symbol time n. In essence,
we let information reside in phase differences from symbol to symbol and utilize the
difference of two consecutive (phase-ambiguous) symbol decisions in the receiver to
form information decisions. The latter will be invariant to the actual synchronization
state of the receiver, assuming the synchronizer does not slip synchronization states.
Differential modulation induces a simple memory into the process, but it has no real
consequence for energy efficiency or spectral shaping.

Example 3.7 4-ary Differeutial Encoding

We usz 4-PSK as an example, and in Table 3.1 we list the encoding rule, which employs
Gray coding of the phase increments.

TABLE 3.1 DIFFERENTIAL ENCODING
RULE FOR 4-PSK

Information Symbol Phase Change, radians
00 0
01 Z
11 n
RES
10 3

Suppose the bit sequence 01, 11, 10 is 1o be sent, and the initial phase at the modulator
is /2 radians. Then the transmitted phase sequence over four symbols is x/2, 7,0, 31/2,
according to Table 3.1,

Upon reception of the noisy signal, the receiver may synchronize to any of four posi-
tions, but comparison of two consecutive. decisions will produce the correct two information
bits, atleast assuming both decisions are correct. In effect, the unknown lock state of the
synchronizer is self-canceling. Wu [15] shows in detail how to implement the encoding
and decoding operations in logic gate form. For the binary case, differential encoding and
decoding are especially simple (see Figure 3.3.23).

There is a small penalty for this convenience: if the predecoding symbol er-
ror rate is P;, then at the output of the differential detector the error probability is
2P(1 — Fs), so typically the symbol error rate is approximately doubled. Also, paired
errors are common in the output symbol stream, since one decision error affects two
consecutive differential decisions. To make up for this doubling of error probability,
however, only a fraction of a decibel in SNR must be added because of the strong sen-
sitivity of error probability to SNR. At P; = 1075, the energy penalty is only about
0.3 dB.
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Figure 3.3.23 Binary differential encoding with J-K flip flop. (a) encoder;
(b) decoder.

3.3.5 M-ary Amplitude Modulation and Quadrature
Amplitude Moduldation

When bandwidth efficiency is of primary importance, modulation schemes with small
signal-space dimensionality per bit transmitted (N /log, M) are necessary. M-PSK is one
such alternative; for large M, however, arrangement of the M constellation points on a
circle becomes progressively less energy efficient. If the channel exhibits good amplitude
linearity, then M-level amplitude modulation (M -AM) and its extension to the amplitude
modulation of phase-quadrature carriers are more efficient constellations. The latter is
referred to as quadrature amplitude modulation (QAM) or M-ary AM/PM, for amplitude
and phase modulation, and has become popular in voice-band data transmission [16} and
in spectrally-efficient digital transmission on microwave channels [17]. '

Let’s consider first the case of M-AM, with M even, wherein the transmitted signal
is related to a data symbol x; € {0, 1,.... M — 1} by

5i0) = Q2x; ~ M + D) (3.3.56)

and ¢(r) is a common signal shape to all signals, either a baseband pulse or a burst
of a carrier-frequency signal. Often this pulse shape is chosen for spectrum-shaping
purposes. The set of {3.3.56) has been constructed so that the net amplitude modulation
is symmetric about the zero level, which is the most energy-efficient design; however,
unipolar modulation is possible as a variation.
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With the symmetric signal set of (3.3.56), the signal-space constellation is the
onc-dimensional set pictured in Figure 3.3.24a. We first define the spacing between -
signal points (in signal space at the receiver) as 2a, so the signal constellation paints
are located at +a, ...+ (M — 1)a. The energy levels of the various signals are a2, 922,
25a%,...(M—1)%a®. The average energy associated with this set is obtained by summing
the squares of odd integers and averaging. This produces

2 qya2
E, = ﬁsﬁ‘ (3.357)

which, as we expect, increases as the square of the number of modulator signals.'
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Figure 3.3.24a M-AM signal constellation and decision regions.

The optimal receiver is simplest in basis function form (Figure 3.3.24b), where we
generate a scalar statistic and compare with a set of thresholds, 0. a, 24, and so on,
to decide the index of the data symbol in accord with (3.3.56). Notice that in the M-AM
(and the M-QAM case as well), the optimal receiver must know the scale factor for the
received signal; otherwise, decision thresholds cannot be properly set. Some form of
automatic gain control (AGC) is thus required in such demodulators.

-

r(t) IT‘dT o | Threshold
0 " | Comparator

dolt) Figure 3.3.24b M-AM receiver.

For a unit-energy basis projection, the variance of the noise component is Ng/2,
and the error probability for M-ary AM is given by the probability that zero-mean
Gaussian noise with variance Ny/2 causes the statistic to be outside the proper deci-
sion zone. With reference to Figure 3.3.24c, and recalling that the probability of er-
ror for confusing two signals having intrasignal distance d = 2a, we find that inner
constellation points have conditional error probability 201d/(2Ng)' 1, while the outer
two points have conditional error probability Q[d/(2N¢)'/?]. Thus, the symbol error

"“This is nearly the same as the second moment of a uniform mass distribution on the same interval:
(M — 1)%a2/3.
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Figure 3.3.24c Conditional p.d.f.'s for various signal points.

probability is

— 2 _
P = MM 2P(elinner point) + HP(elouter point)

M- [ d
_ X )Q :I

M | 2N}
2AM - 1) r 6E, 1,2 (3.3.58)
=Tw © [(MZ—I)NO] ] |

_2(M—1)Q' 2E; 3logM '
M Ne M2—1

since £, = EplogM. Thus, overlooking a multiplier (which is less than 2), to obtain
a given error probability, M-AM is a factor of (3logM)/(M 2 __ 1) less efficient in en-
ergy utilization than binary antipodal signaling [compare (3.3.23)]. This is a substantial
penalty for large M, but we improve spectral efficiency in proportion to log, M, since
log, M bits are sent per signal-space dimension.

To minimize bit error probability, Gray coding of the amplitude levels would be
used, since nearest-neighbor errors are predominant, and the bit error probablllty can be
approximated for large M by

1
log M

~ 2o |[2En3loeM 2
logM ™ [{ No M2 1] |

We have already seen in the case of 4-PSK how quadrature modulation achieves
a doubling of the spectral efficiency relative to that of 2-PSK, without any increase in
required E;/No. The same notion can be exploited here to perform quadrature am-
plitude modulation, If we simply modulate cosw.t and sinw.t each by 2™ equally
spaced levels, as before, we obtain square constellations with M = 2¥" points, which
for M = 4, 16,64, 256, ..., are reasonably efficient and simple to instrument. For in-
termediate values of M, say 32, 128,..., a cross-construction is easily implemented
and efficient, in which we begin with a square constellation with M/2 points and

P
(3.3.59)
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append on the periphery M /2 additional points in four zones, Figure 3.3.25 shows such
constellations for M = 16,32, 64, and 128. These arrangements of signal points are
particularly convenient since the optimal decision zones, D;, are rectangular with edges
aligned along signal-space axes, and decision making reduces to separately thresholding
each signal-space coordinate.

* 5 ejfs s »
(a) (b}

Same as M = 64 with

[ [ * L] * * L o 28 0 &
® 08 & e
L ® L - [ ] * [ ] ce s e
AR D on each edge
e o oo o o o Figure 3.3.25 QAM constellations.
. (a) M = 16, three decision zones
Toeostee (d) shaded; (b) M = 32; (c) M = 64;
{c) dy M = 128.

Evaluation of the performance of QAM is a simple matter of calculating the average
energy in terms of one-dimensional signal spacing 2« and bounding the error probability
in terms of this same distance. In QAM, inner constellation points have four nearest
neighbors, and the corresponding error region is the union of four half-spaces. Referring
to Figure 3.3.25, we find, however, that edge points and comner points have three or two
neighbors, respectively. (Figure 3.3.25 illustrates the three types of decision zones for
different consteilation points in 16-QAM.) An upper bound is obtained by assuming a
multiplier of 4 for all cases:

d
P; <40 [(2[\’_0—):5] (3.3.60)
This may always be converted into the form
28, \"?
Ps = 4Q T"M . (3361)
0

where 1y is an efficiency factor, normalized to the efficiency of antipodal signaling,
and depends on the constellation size and shape. For M-AM and M-QAM designs,
we will find that n,, < 1. Figure 3.3.26 tabulates these efficiencies, for the QAM

constellations. To illustrate calculation of these efficiencies, we consider the 32-point
QAM cross-consteilation.
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- Mam Maam N dB

4 16 - -4.0

- 32 -6.0

8 64 -8.5

- 128 -10.2 Figure 3.3.26 Relative energy

16 256 -13.3 efficiencies for M-AM and M-QAM,

normalization is to antipodal design.

Example 3.8 Error Probability for 32-Point QAM

The 32-point constellation of Figure 3.3.25 is scaled to have signal spacing d = 2a in each
dimension. The various energies are 2a°, 1042, 1822, 2642, and 344>, with populations at
these various energies of 4,8, 4, 8, and 8, respectively. Assuming equiprobable selection,
we determine that the average energy, expressed in terms of distance, is

E; = 20a® = 5d° (3.3.62)
so that d = (E_;/S)'/z. Substitution into (3.3.60) and use of E;/Ng = SEy/Ng produces

i
P, <40 [[%}'341] ] (3.3.63)

indicating a relative efficiency of 101log (%) = -6 dB for 32-QAM relative to antipodal
signaling.

Tighter bounding is possible in this case by counting nearest neighbors and averaging
properly. It happens in this case that the multiplier of 4 can be reduced slightly to 3.5.
The lower-bound multiplier can also be tightened by realizing that the complement of D;
1s, except for comer points, partially covered by two nenoverlapping half-spaces, so the
lower-bound multiplier can become essentially 2.

In the one-dimensional case, (3.3.58) reveals each doubling of M, or increasing the
dimensional efficiency by one bit/dimension, necessitates roughty a factor of 4 (6 dB)
increase in E;/Ny to maintain a given P,. For two-dimensional QAM modulation, we
may quadruple M in exchange for increasing signal-to-noise ratio by 6 dB, as shown
by the tabulation of ny in Figure 3.3.26. This increases dimensional efficiency by
2 bits/2 dimensions, so in this sense QAM apparently offers no intrinsic benefit over
M-AM. We will see in our study of power spectra in Section 3.7, however, that the
QAM format really does gain by a factor of 2 in spectral efficiency for the same energy
officiency, extending the superiority of QPSK over binary PSK. The reason is that the
two sinusoidal basis functions reaily constitute only one complex signal dimension.

To minimize bit error probability, proper bit labeling should be made to ensure that
adjacent signal points differ in as few bits as possible. For square constellations with
M = 2 this is achieved with Gray coding of m bits along each coordinate axis.

Example 3.9 Digital Microwave Transmission Using 64-QAM

As an application of QAM, consider transmission of binary data at rate R, = 90 Mbps over
a digttal microwave radio link. The channel bandwidth allocation is 20 MHz in the 4-GHz
region for this application, so we seek a transmission method that affords a large number
of bits/dimension and adopt 64-QAM. Because we transmit m = 6 bits per symbol interval,
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the required symbol rate is 15 Msps, and with proper choice of modulator pulse shape g(/},
the resulting power spectrum can meet the 20-MHz constraint. (More discussion on this
topic follows later in the chapter.)

Let's suppose the required bit error probability must not exceed 1072, Using the
approximation that a symbol error is most likely to produce one bit emror among the six
decoded bits, along with the efficiency factor for 64-QAM, we set

172
4 |2€
Py=10""= -0 l-[—,v;hﬂm] ] (3.3.64)

and find the required Ep/Ng = 18.1 dB.'” Often cited instead is the required “signal-to-
noise ratio” (SNR), which is (unfortunately) defined in several ways. A typical definition
of SNR is the ratio of signal power to noise power, measured in a bandwidth equaling the
symbol rate:

No

Therefore, the theoretical SNR by this definition would need to be 18.1 + 10log;6 =
25.9 dB. The actual SNR to achieve the désited performance, as quoted by a manufac-
turer, may be several decibels larger due to the need to overcome impairments caused by
intersymbol interference, multipath effects, nonlinear distortion of amplifiers, losses due to
synchronization, and other impairments associated with the microwave channel,

As a note on technology, several manufacturers now supply 256-point QAM mi-
crowave digital radio equipment. This modulation is able to increase the bandwidth ef-
ficiency by a factor of %. in exchange for still larger required £5,/Ng. 1024-point QAM
may be “just around the corner.” The interested reader is referred to a discussion ‘of digital
microwave radio techniques found in [17].

3.3.6 Multidimensional Lattice-based Consteliations for the
AWGN Channel

We have just focused on large constellations of points in one- and two-dimensional signal
spaces, formed by a simple arrangement of points on a one- or two-dimensional grid. The
performance analysis for these cases raised the following signal design. problem: locate
M signal points in a one- or two-dimensional space so that the minimum intrasignal
distance is some target value d, and so that the average energy of the constellation is
minimized. (An alternative is to minimize the peak energy.)

It is natural to inquire whether we have done the best arrangement in one and two
dimensions, as well as what potential exists in higher-dimensional signal spaces. The
question is related 1o the classical sphere-packing problem [19). wherein we wish to
pack N-dimensional balls having radius d/2 as densely as possible. This follows since
decision regions for regularly arranged points whose separation in N -dimensional space
is d are regions circumscribing spheres'® of radius d/2. For one-dimensional signal
constellations, the solution is obvious, and for the one just studied, place points equally
spaced along the real line in signal space, symmetrically about the origin.

"*Recall that antipodal signaling requires approximately Ej,/Ng = 9.6 dB.
18Sphere must be understood in 2 general sense here; for example, a two-dimensional sphere is a circle,
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In two dimensions, we have found that placing points on the two-dimensional grid
offers no intrinsic gain in packing efficiency over the one-dimensional arrangement, but
there is a more dense regular ammangement of two-dimensional points. It is readily exhib-
ited by arranging coins on the table, producing the hexagonal sphere-packing shown in
Figure 3.3.27. Signal points are located at the vertices of equilateral triangles that tessel-
late the plane, and the nearest-neighbor decision zone (also called the Voronoi region) for
each point is a hexagon; thus the term hexagonal packing. A simple volumetric compar-
ison will show that this hexagonal packing is 5% more dense than the two-dimensional
grid, or rectangular packing, meaning that in a given large area of the plane 15% more
coins may be placed with the hexagonal arrangement than with the rectangular centering,
keeping d constant. Since the average energy of a constellation is proportional to radius
squared (we neglect the discreteness of the constellation here, as well as constellation
edge effects), a given value of M may be attained with 15% less signal-space area, or
15% less energy to maintain the same intrasignal distance. This in turn projects a 0.6-
dB increase in energy efficiency for the optimal packing. This is partially offset by an
increase in the number of nearest neighbors from four to six.

&
ST e e (143
/ \\ — —
2" 2
Il - ~
S . . e > .
s i/
i !
/! /
JI ;’
l’ o ” .
- £
Y (1,00 (2,0
\\ ‘\
\\ ‘\
e . . > [
A} ”
\ i
A e
Ay
) e
N p_T e . Figure 3.3.27 Section of hexagonal
lattice with M = 16 points. Center of

mass is (—1/4, 0).

The practical problem with this two-dimensional packing is that it does nor lead
to convenient constellations for M = 8, 16,32, ..., and the decision boundaries are no
longer as simple as before. Foschini et al. [20] have studied hexagonal constellations,
finding small (about 0.5 dB) gains for M = 16. Simon and Smith [21] also treat this
signal design problem. Generally, the small gains available are not deemed worth the
added complexity.

More interesting possibilities emerge in three or more dimensions. A systematic
means of describing large sets of points in N -dimensional Euclidean space involves lat-
tices [22]. For ease of modulator implementation and, more importantly, demodulation,
lattice-based constellations are preferred over other more general arrangements, at least
for large M. This is because fast procedures exist for finding the nearest point in a lattice
to a received point in Euclidean space [22]. Moreover, the uniformity of lattices suggest
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that analysis is more straightforward. We provide a brief summary of pertinent results
here, with 2 more detailed discussion found in Appendix 3A2.

The one- and two-dimensional AM/QAM designs given previously are subsets of
the tattices designated Z' and Z?, respectively, the set of all points in one and two
dimensions having integer-valued coordinates. (Technically, the constellations shown
are translated to be symmetric about the origin, but this does not fundamentally affect
the lattice properties.) These lattices extend to higher dimensions in obvious manner
and are designated by ZV, but provide no really interesting results for signal design by
themselves. (As a base for coded transmission, these lattices are more useful, however.)

The two-dimensional hexagonal lattice is designated A; and can, as with any integer
lattice, be described through vector representation of points;

si = ni,bo + 1, by, nj,, n, integers, (3.3.66a)
where by and b, are basis vectors, perhaps nonorthogonal, for the lattice. For Ay,

by = (0, 2), b, = (}2— %) (3.3.66b)
By (3.3.66a), (n,,, n;,) define a lattice point and provide its “label.” Notice with the
adopted basis that the minimum Euclidean distance between lattice points is again 2.
While on the topic of two-dimensional lattices, the subset of Z* consisting of integer
pairs whose sum is even, or whose sum is 0 modulo 2, is designated as D> and would
be formed by choosing by = (1. 1) and by = (1, —1}. This checkerboard arrangement
of points can, however, be seen, upon a 45° rotation of axes, to be essentially the same
lattice as Z7, the only real difference being a stretch factor of 2'/2. We say that D,
and 27 lattices are isomorphic, that is, have the same structure. In three dimensions the
densest lattice packing is provided by the face-centered cubic lattice, which is depicted
in Figure 3.3.28. This lattice is slightly more dense, surprisingly, than the bedy-centered
cubic lattice and more dense than A; as well. Crystallographers have studied properties
of these and other three-dimensional lattices for many years.

3 & ¥

{c)

Figure 3.3.28 Three-dimensional sphere packings. (a) Simple cubical pack-
ing; (b) body-centered cubical packing; (¢) face-centered cubical packing.

In four dimensions, which has more engineering appeal than three dimensions, the
best lattice packing is provided by the lattice commonly designated Dy, also known as
the Schlafli lattice, formed by the set of all four-tuples of integers that have an even sum,
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that is, which sum to 0, modulo 2:'7

3
Z n; =0 mod 2] . (3.3.67a)
=0

D, = '("0. ny, "z, n3)

D; would thus include points (1,1, 0,0), (1,1, -2, 2}, and so on,
A basis for this set is given by

b = (2.0,0,0),
b, = (1,0,0,1),
by = (0, 1,0, 1),
bs = (0.0, 1, 1).

With respect to this basis, the label for the lattice vector (1,0, —1,0) is (0, 1,0, —1).

If we utilize four-dimensional constellations for M -ary signaling and compare fairiy
with, say, two-dimensional signaling using Z?, keeping the number of bits per signal-
space dimension constant, we find that for large signal sets D4 is 1.5 dB more energy
efficient than ZZ2, merely because of the efficiency of packing in higher dimensions (see
Appendix 3A2).

Still better is the densest eight-dimensional lattice, designated Eg, and known as the
Gosset lattice. This lattice can be formed as follows: construct the lattice Dy as the set of
all integer-valued 8-tuples whose coordinates sum to an even number, or whose coordi-
nate sum is zero, modulo 2. Streich the lattice by a factor of 2 in each dimension and call
it 2Dg, which would be the set of all 8-tuples with even coordinates summing to 4. The
minimum Euclidean distance between points in this stretched lattice is 2(2)'/2. It hap-
pens that we may slip a coset, or translate, of this stretched lattice, formed by adding the
vector (1,1, 1,1, 1,1, 1, 1) to each point of 2Dyg, into the interstitial space of the former
stretched lattice without reducing the minimum Euclidean distance! Representative points
inEgare (2, -2,2,2.0,0,0.0)and (1,1,1,3, =1, -1, —1, = 1). Once we appropriately
account for energy consumption in a large Eq lattice, packing theory reveals that, for fixed
value of bits/signal-space dimension, another 1.5 dB is gained by the eight-dimensional
arrangement over the four-dimensional arrangement. While this progression may seem
unending, it must be noted that the number of nearest neighbors is rapidly increasing in
the high-dimensional lattices, mitigating some of the apparent energy gain. For Dy, the
kissing number, the number of nearest neighbors, is 24. In Eg, the kissing number is 240.

Encoding of signal points in such lattices can be accomplished by table lockup or
by (3.3.66). Of more importance is decoding. We transmit some selected lattice point
and receive a Gaussian-noise-perturbed version, r, a point in N-dimensioral Euclidean
space. ML detection corresponds to finding the signal point that is closest in Euclidean
distance o 1. All the lattices cited thus far possess fast algorithms [22] for decoding
a given point in R" to the nearest lattice point, making even very large constellations
with perhaps 2'* points realistic. For example, to find the nearest lattice point in Dy, we
round each coordinate of the received four-dimensional vector r to an integer and check
if the sum is even. If not, we find the coordinate that was previously farthest from an

(3.3.67b)

""This provides a description of Dy.
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integer point and round it the other way. Minor modifications are required to handie the
decoding of points outside the periphery of the finite constellation. Note that, as with
QAM designs, gain control is essential in proper demodulation.

Figure 3.3.29 shows the asymptotic (large signal set) relationship between the ratio
of required average symbol energy E, to squared minimum distance and the constellation
size M for Z*. Dy, and Eg. Note the gain of 1.5 dB in each case. Also shown are the
efficiencies of selected designs for certain M. These comparisons are fair: the energy is
normalized per dimension, as is the number of signals. Thus, comparison of 16-QAM,
a two-dimensional scheme, is made with a four-dimensional design having 256 points.
Both have a dimensionality factor of 2 bits/signal-space dimension, and hence we claim
the same spectral efficiency.
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Figure 3.3.29  Packing efficiency of two, four, and eight-dimensional laices.

Example 3.10 Design of 32-point Constellation from Dy

To illustrate the potential of multidimersional signaling, we focus upon a 32-point design
in four-dimensional signal space derived from D4 [23}. We include 24 peints of the form
(£1, £1,0.0) and permutations, plus 8 points of the form (+2, 0, 0, 0) and permutations.!®
The normalized average energy expended per signal is £; = (242 +8-4) /32 = 2.5 Atthe
same time, the minimum squared intrasignal distance is d2 = 2. Thus, d2 = 0.8FE; = 4E,,,
since again each signal is presumed to convey log M = 5 bits. Substituting this result into
the union bound (3.3.34) (which is pessimistic regarding the multiplier) yields

12
E
P, <310 [(——2,\,") ] (33.68)
0

which in terms of average energy is exponentially equivalent to antipodal signaling, How-
ever, the design here achieves a dimensional efficiency of § bits/4 dimensions, instead of

"Notice that we have eliminated the lattice point at the origin, retaining symmetry.
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I bit/l dimension with antipodal designs. This trui.s:ates into 25% better spectral efficiency
for no (asymptotic) loss in energy efficiency.

Production of four- (or more) dimensional modulation may be accomplished in
several ways. Most obvious is the use of two consecutive time siots of quadrature
modulation, and in this sense multidimensional modulation becomes similar to the block
coding techniques we will see later. Another way might be to simultaneously modulate in
QAM fashion on each of two space-orthogonal polarizations of an electromagnetic wave
[23]. Or we could use QAM modulation on two carriers frequency spaced to produce
orthogonality. All these yield the same performance in terms of energy efficiency and
spectral efficiency, if properly normalized.

Although multidimensional modulation provides somewhat modest gains over two-
dimensional modulation, much of the important recent progress in coding theory for
bandwidth-constrained applications has used such lattices as the modulation base for
block and trellis coding. This will be reexamined in Chapters 5 and 6.

3.3.7 Summary of Energy and Spectum Efficiency of
Modulation Techniques

We have now studied numerous signaling techniques for the additive Gaussian noise
environment, some of which, for example, M-ary orthogonal designs, occupy many
signal-space dimensions per symbol and will be the most bandwidth consumptive. Oth-
ers, for example, M-PSK or M-QAM, sacrifice energy efficiency in return for spectral
economy. It is instructive now to compare the performance of these realizable schemes
against the bound on this bandwidth—energy trade-off provided by the channel capacity
limit of Section 2.9. This comparison is primarily useful to see the potential for still
more efficient operation.

To make this comparison, we locate various signaling options studied in this section
on the plot of Figure 3.3.30, a replica of Figure 2.9.7. The required E,/N; for each
technique is that required to produce a bit error probability of P, = 10~°, as found in
earlier figures. There is nothing special about this performance standard, except that it
is commonly used and represents good reliability for a variety of applications.

To measure the spectral efficiency of each signaling technique, we appeal to
Nyquist’s resull that it is possible to transmit R; samples per second, using a signal
strictly band-limited to R,/2 hertz, without intersymbol interference, and thus perfor-
mance is identical with that of single-symbol transmission. For bandpass signaling,
which is usually the case of interest, the apparent result would be that we may signal R,
symbols per second while occupying a bandwidth of R, hertz. However, by employing
quadrature modulation or, equivalently, letting the transmitted symbols be complex sig-
nal points, as in QAM/PSK, we can recoup this factor of 2 loss. Thus, consider the case
of M-ary signaling within the PSK/QAM/PAM class. Letting the bit rate be R, bps, the
symbol rate becomes R/ log, M sps, and the bandwidth can thearetically be as small as

" log, M

. (3.3.69)
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Figure 3.3.30 Energy and spectral efficiencies of standard modulation for-
mats. All assume coherent detection.
leading to a spectral efficiency'®
R
.B_” = log, M bps/Hz (QAM/PAM/PSK). (3.3.70)

Thus, we might say that QPSK has a spectral efficiency of 2 bps/Hz or that 64-QAM has
a spectral efficiency of 6 bps/Hz. The reader should understand that these are optimistic
limits; no implementable signaling method is able to achieve this spectral efficiency
without intersymbol interference, and the achievable spectral efficiencies should perhaps
be regarded as 25% less. More precise descriptions of power spectra are given in
Section 3.7.

Consider, on the other hand, the orthogonal/biorthogonal formats. If the desired
bit rate is R, bps, then the number of orthogonal dimensions occupied by an orthogonal
signal constellation is R,M /log, M dimensions/second. This fallows since each symbol
in an M-ary orthogonal set occupies M dimensions, but the symbol rate is R,/ log, M sps.
If these signal-space coefficients were sent at baseband, the bandwidth could be as small
as R,M/2log, M hertz without intersymbol interference. In bandpass signaling, by
employing quadrature modulation, the bandwidth wouid also be R,M /2 log, M henz.
This points to a spectral efficiency of

Ry _2log, M

B ™ bps/Hz (orthogonal signals). (3.3.71)

'SThe unit is commonly abbreviated as bps/Hz.
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An alternative heuristic derivation of the bandwidth for orthogonal signaling is pro-
vided by studying M-FSK. The minimum spacing between the signal frequencies for
orthogonality is Af = R,;/2 hertz, and thus M-FSK signal frequencies span a range
MR, /2 = R,M /2 log, M hertz. Although this is not equivalent to the true width of the
signal’s power spectrum, it is a good approximation when the number of frequencies,
M, is large. Thus, the spectral efficiency is again 2log, M/M bps/Hz for orthogonal
signaling. A factor of 2 increase in this efficiency is possible for biorthogonal signaling,
since the number of dimensions occupied by the signal constellation is only MR, /2.

The designs shown in Figure 3.3.30 span a large range of energy/bandwidth efficien-
cies, but by comparing typical modulations with the capacity bound for the band-limited
Gaussian channel, it is reasonable to assert that the potential saving in E,/Np is some
9 dB, while maintaining the same spectral efficiency. Closing this gap has been a prin-
cipal objective of communication theorists and engineers for several decades. Important
progress has been made, as will be seen in Chapters S and 6.

This comparison is of real designs against the channel capacity limit, admittedly
somewhat tenuous. We are comparing the resources required to achieve a certain finite
error probability with a limit associated with “arbitrarily small” error probability. In
particular, if we had done the comparison at P, = 106~ or P, = 10~°, our conclusions
would differ somewhat. Also, the measuring of bandwidth is somewhat controversial, but
the one used here is at least internally consistent and shows the correct relative positions.

3.3.8 Extension to Single-symbolTransmission on
Nonideal Channels

Recall that our premise at the beginning was that_the channel was ideal for the signal
set adopted. If we continue with single-symbol transmission, it is really quite easy to
extend our discussion to the case of nonideal linear channels, described by an impulse
response c(f). At the receiver, we now encounter the problem of deciding among M
distorted signals, which might be expressed by

5i(1) = 5;() * c(1), i=01,... M-l -—-com<t<x (3.3.72)

with * again denoting convolution. We receive one of these in the presence of additive
white Gaussian noise. A procedure exactly like that followed earlier in this section would
produce optimal receiver structures, including a basis function receiver, a correlation
receiver, or a matched filter receiver. The latter two are the most illuminating and are
shown in Figure 3.3.31, wherein we correlate with, or match to, the distorted signals
and furthermore add bias terms, if necessary, which are related to the energy residing in
the distorted signals. We denote the latter by £/, If the channel filter is defined to have
maximum gain of 1, then £, < E;, by Parseval’s theorem.

Performance analysis for this situation is a direct extension of our work thus far.
For example, the probability of confusing two signals sent by a distorting channel, when
one-shot transmission is in effect and optimal reception is performed, is

P Eé 12 .
s =0 (m) . (3.3.73)
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where E; is the energy contained in the filtered difference signal. This is an obvious
generalization of (3.3.20). This filtered difference signal energy may be much smaller
than that available on an ideal channel and will depend strongly on the nature of the
two signals and the impulse response of the channel. In the exercises, we illustrate the
caiculation by considering binary NRZ transmission through a channel whose impuise
response is a pulse of width t < T.

The performance represented in (3.3.73) is sometimes known as the matched filter
bound [24], for it represents a lower limit on probability of symbol error when the same
signal set is employed for sequence transmission on a given nonideal channel. The
optimal sequence processor begins with a filter matched to the distorted signal(s) and
is then followed by a process of unraveling the intersymbol interference. However, the
resulting probability of error for the optimal receiver can never better the performance
given by (3.3.73), and the difference in energy efficiency between the actual performance
and the matched filter bound reveals the real penalty exacted by the nonideal channel.

~ 3.4 NONCOHERENT DEMODULATION OF CARRIER-MODULATED
SIGNALS

To this point, we "have analyzed detection under known-signal conditions, which again
means that th¢ demodulator is provided with all parameters required to perform optimal
processing. This includes the amplitudes of the signals to be detected (unnecessary if
all signal energies are equal) and timing parameters. In the case of carrier modulation,
the assumption presumes that a phase-synchronized reference is also available, and this
regime is known as coherent detection. An important practical case arises when this
reference phase is not known, and we model this situation by assuming that the unknown
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phase angle is a random variable uniformly distributed on [0, 2x). We refer to this regime
as noncoherent demodulation.

To motivate our discussion, we must understand the issues surrounding knowledge
of catrier phase. It is perhaps conceivable that the receiver and transmitter could somehow
synchronize their oscillators initially and depend on the relative carrier phase remaining
fixed for the duration of a communication session. However, any frequency offset,
no matter how small, implies a large phase error eventually. A 1-Hz offset, which
corresponds to high-quality oscillators operating at 100 MHz, say, implies a phase error
of 27 radians after only 1 second! Motion of the transmitter and receiver by only a
fraction of a wavelength relative to each other also leads to large change in relative
phase angle.

One recourse is to develop the camrier phase estimate from the received signal
itself. This may be done with various forms of phase-lock-loop estimators. However,
these estimators are relatively complex, the phase estimate is never perfect anyway, and
the synchronizer requires an initial synchronization time for phase acquisition, leading to
link inefficiency in applications where transmission is in short bursts. Sometimes it may
be just as wise to dispense with trying o utilize carrier phase in the detection process.

Clearly, a receiver that knows the phase angle of the arriving signal and processes
accordingly must have a performance that is at least as good as one that does not. In
fact, we might expect a substantial penalty for being ignorant of carrier phase. However,
we will find that this energy penalty can be made rather small with intelligent design, at
least for the symbol-by-symbol detection studied here. The implications of noncoherence
for coded systems may be more negative, however.

As a final introductory note, noncoherent detection is not germane to baseband
iransmission systems; there carrier phase knowledge is not an issue because there is
simply no explicit carrier involved. Symbol timing is required in any case, however.

3.4.1 Shructure of Optimal Noncoherent Demodulator

We assume the modulator can produce one of M carrier-modulated signals of the form
$ilt) = a;(t) coslw t + yi (1)), Ti<t=<Ty, (3.4.1a)
or, in complex envelope notation, we have
si{t) =Rela(nemWelt) T, <t <7, (3.4.1b)

Here a;(t) is the (real) carrier amplitude function, and y;(t) is the phase modulation

process for the ith signal, both assumed known by the demodulator. If the carrier

frequency is to be modulated, we can embed this into the phase modulation process.
The energy in a given signal is

Ty ) 1 10
E; :f sf{tyde = —[ a*(t)dr, (3.4.2)
r 2/t

assuming either w, 3> 2r [Ty —T;) or that w, = n2r (T — T)).
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Examples of such signal sets are the following:

Binary On-Off Signaling

Solt) =0. (3.4.3)
51(t) = Acosw,t, 0<t<T,.
Binary Frequency Shift Keying
so(t) = A cos(wot + &), 0<1=T,. (3.4.4)

51(r) = Acos(wit + 6y),

where w; and 6;,i = 0, 1, are respectively the radian frequency and phases attached to
two separate oscillators.

M -ary Orthogonal Signaling with Hadamard Sequences
5:(1) = Ah;(t) cos w,t, (34.5)

where h;(¢) is a row sequence from a binary M by M Hadamard matrix as defined in
Example 3.6.
The received signal is written as?®

r(t) = s;(t — 1)+ n(t)

(3.4.62)
= 5i(¢, T,0) + n(t),

where |
si(t, 7,8y =a;(t — t)cos[w.r + y;(1 — 1) —€), m=0,1,....,2N -1, (3.4.6b)

is merely a delayed version of the original signal with 8 = .t modeling the unknown
carrier phase shift. Under the assumption of symbol timing being available in the receiver,
the effect of the transit time delay 7 on the modulation components can effectively be
removed from the analysis; the carrier phase ¢, however, is presumed unknown. As
before, the noise n(r) is a sample function from a white Gaussian noise process with
zero mean and noise spectral density Ny/2 W/Hz.

As with the model developed in Section 3.1, we assume that the phase angle 0
is constant over one signaling interval, or at least very nearly so. This is generally the
situation in practice unless the symbol rate is very small relative to the spectral width
of the oscillator being modulated. Specifically, an oscillator whose spectral width is,
say, 10 kHz has an internal phase modulation process that is highly correlated over an
interval of 1 us, the symbol interval for signaling at 1 Msps. We could not invoke the
constant phase assumption, however, if this same oscillator were used for modutation at
100 sps. Spectral purity remains a technological challenge for optical communication,
for current semiconductor laser sources may have optical linewidths on the order of
10* Hz, and bit rates typically are on this order of magnitude. The same constant phase
assumption requires that any frequency uncertainty due to Doppler shift, oscillator drift,

MHere we explicilty show the propagation delay 7 to indicate one source of the unknown carrier phase.
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or the like, be reduced te a small fraction of the symbol rate. We model the variable ¢ as
uniformly distributed on {0, 2;r], which, in the absence of prior information, is certainly
the reasonable assumption.

The derivation of the optimal detector is procedurally similar to that of the Known-
signal case. We convert waveforms to vectors through orthonormal expansions, write
likelihood functions, simplify these into a vector processor, and then let the dimension-
ality of the expansion become large to cast the detector as a waveform processor. The
specific steps are as follows:

1. Expand r(r) using an orthonormal series expansion. The expansion is in terms
of the orthonormal basis set used to describe the signal, augmented by orthonormal basis
functions that are in phase quadrature with the original basis sel, this so that if the
signal happens to arrive in exact phase quadrature with the normal basis set we obtain
nonzero signal expansion coefficients nonetheless. As before, we add other orthonormal
functions to complete the set. We may discard as irrelevant those expansion coefficients
obtained by projection onto nonsignal bases, since again these data do not involve the
hypothesis being tested in any way. We designate the relevant expansion coefficients
by the vector r. The available data are now a 2N -vector, each of whose components’
is Gaussian, independent, with variance Ny /2, and mean values dependent on the signal
index | and the unknown angle . Specifically, letting @, (¢) represent a basis function
or its phase-quadrature version, we have that the corresponding expansion coefficient for
the signal component is

Tf
Sim{6) =[ 5i(t. 0), (1) dr, (3.4.7)
T;

that is, the projection of the phase-shifted signal s,(7. 8) onto the mth basis function.

2. Expiess the likelihood for the ith signal as

In
f(rlS;) =j S 0 f(6)de, (3.4.8a)

0
where f(r|S;. #) is the conditional p.d.f. for the observation vector, given ¢ and §;. The
likelihood can then be expressed as

2 27 N1

l 1 o
Sr = S‘, N 6 9 dg = — - —Irmf-"im(H”‘ /31’7‘ .
fuwisy= | f(r15,.6)7(6) 2::[0 I1 7o ds

=0}

(3.4.8b)

Note that noise independence in orthogonal dimensions has again been invoked in writ-

ing (3.4.8b). Also, conditioned on a specific signal index and 6, the signal-space projec-
tions are Gaussian.

3. Expand the likelihood function:

2N -
1 |

. | m 1 2N -1
frls) = —— ]_I g"}”uf’zf"[ — ]—[ 1S 145] 1207 g
QRroh)N o 2

m=() m=0"

349

2.‘r ] ’
— K,[ — RS 207 gy
0 ZJT
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In this last expression, we have extracted an expression common to all likelihood func-
tions, defined as K, but this is an arbitrary scale factor and may be eliminated. In the
last expression, r and s;(8) are, respectively, the vectors representing the projections and
the set {s;,,(0}}.

4. The vector operations in the exponent of (3.4.9), such as r-s;(8), can be equated
with equivalent waveform operations, for ¢xample,

T, R
r-s;(8)= f I r(r)si(e, Q) de. (3.4.10)
T;

_This follows by exactly the same argument as in Section 3.3 for known-signal derivation.
Making such equivalences in (3.4.9) and recalling that o> = Ny/2 gives that the optimal
noncoherent detector should

2 1 2 T 1 T
maximizef — exp —f r{t)s;(t,8) dt — ___] s2(e,0)dr |d6.  (3.4.11)
i 0 2 N() T, N() T:

The last integral in the exponent is the energy in signal i and is independent of 8, so the
corresponding exponential term may be brought outside the first integral, yielding

2n 1 2 7;
maximize e~ E/No f — exp [—/ r{r)s;{z,8) dr] de. (34.12)
i 0 2 N() T; _

We observe that the inner integral is a correlation integral, given a fixed 6, and this
correlation is to be exponentiated and then averaged over 6 to determine the decision
statistic for message ;. Fortunately, the signal processing is much simpler.

To see how to perform (3.4.12) more feasibly, we define

T
Iy = f r(t)si(t)de (3.4.13a)
.
and
g, =L r{ts; (I, "2-) dt. (34|3b)
where
i (r, E) = g;{t)cos [w.t + yi(t) — E] = a;(¢) sin[ew.! + y;(1)] (3.4.13¢c)
2 4 2 ) (3 ! » LLEN

that-is, a quadrature-phase-shifted version of the ith signal.’! Then (3.4.12) becomes

2r :

I Ly 6 —

maximize e'E"/N"[ — exp 2G., cos , Sinf) de. (3.4.14)
i 0o No

2'The absolute phase of the reference signals is not important as long as they remain in phase quadrature.
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By employing a rectangular-to-polar conversion of coordinates,

= (2,7 + 2, )7 (3.4.15a)
and
§ =tan"! (-Z‘—) (3.4.15b)
Zg,

we see that the decision rule (3.4.14) may be written as
.. —E; N | an ZZ,'
maximize ¢~/ — exp| —=cos(s +8)|d6. (3.4.16)
i 2n 0 N()

The inte'gral in (3.4.16) is related to a special function Io(x) known as the zeroth-order
modified Bessel function of the first kind, defined as

2
Io(x) 2 2-;;./0. exp [x cos f1d8. 3407

lo(x) has the graph shown in Figure 3.4.1 and in particular is monotone increasing in
its argument. The reader is referred to Abramowitz and Stegun [25] for a thorough
description of this function, including series expansions, and approximations for large-
and small-argument cases.

Iotx) } e

’Q(X) - W

Figure 34.1 Modified Bessel
1] X function /g(x).

Since cos{x) is periodic in its argument and the integration in (3.4.16) is over one
period, the rule of (3.4.16) can be expressed as

2z;
maximize e ~£/Mo [, ( Zi ) (34.18)
i Ny

Upon taking the logarithm, a monotone-increasing function of its argument, we may
equivalently state the rule as

22, E,‘
maximize log, - —. (3.4.19)
i N()

{f all the signal energies are equal, which is typical in noncoherent detection set-
tings, we can eliminate the bias term in (3.4.19) and just as well maximize z; or equiva-
lently 22, again because of monotonicity of log, Jo(x). The optimal noncoherent receiver
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then has the form shown in Figure 3.4.2. We remark that for each signal two waveform
correlations are required, plus squaring, so the complexity is somewhat larger than for
the coherent receiver, at some disparity with conventional thought. (The noncoherent
receiver is, of course, spared the need to acquire phase estimates.)

Noncoherent Correlator for sq(t)

P slt) s
0 :
ALE f (1 :
'f %y o
Lo |
R .
A
Choose|l !
SMI‘ t Largest|

Figure 3.4.2 Block diagram of optimal noncoherent receiver, correlator form,
equal symbol energies.

In passing, we note that if the demodulator has some knowledge of the signal phase,
but not exact knowledge as in Section 3.3, a variation on the present receiver can be
designed to optimally combine the two quadrature corvelator channels {26, 27]. Practical
implementations seem to use either the known-phase processor, even though phase may
not be perfectly known, or fall back to the completely unknown phase processor.

Other forms of this receiver are possible, as was the case with coherent detection.
In particular, since all signals’ contain the same cos(w,t) dependency. we may develop
a receiver that does carrier multiplication by cos(ew,f) and by sin(w.t) and then do the
bulk of the processing with baseband, perhaps digital, circuitry. (Exercise 3.4.3 explores
this for one signaling example.)
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Another common form is the bandpass matched filter form, especially appropriate
for the M-ary FSK case. Here we use M parallel matched filters, with impulse responses

2
hi = —s(Iy =0, T <t<Typ (3.4.20)
0

and sample the envelope of the filters’ outputs at + = T;. This operation produces the
same decision statistics z, as the receiver of Figure 3.4.2, since the envelope of a bandpass
signal is defined as the root-sum-square value of its quadrature components. Figure 3.4.3
illustrates the noncoherent matched filter implementation. As when choosing among
coherent receiver structures, design issues would dictate which form of the noncoherent
receiver is preferred.

ri) Envelope I;r -
—1 #ol® 1 betector | %
A
Choose f
S—ad
Largest
Zpq
Envelope - |
1Y i
-t Detector —ef

Figure 3.4.3 Optimal noncoherent receiver, matched filter form, equal symbol
energies.

3.4.2 Performance Analysis for Noncoherent
Demodulation of Binary Orthogonal Signals

Given two carrier-modulated signals with equal energies and prior probabilities, Fig-
ure 3.4.2 reduces to the receiver shown in Figure 3.4.4, We shall first treat the case of
binary orthogonal signals. Our emphasis on orthogonal signals is based on the fact that
this choice provides the smallest probability of error among the class of binary signals,
provided phase is unknown and peak energy is constrained [26].

To analyze the error probability, we may assume without loss of generality that
so(t) is the transmitted signal and that the unknown phase angle @ at the receiver is
zero, since performance is invariant to 6. First, consider the statistics x; and y, in
Figure 3.4.4. Since s,(r) is orthogonal to s4(r), the random variables X, and Y; will
both have zero mean. Each has variance o2 = 2E, /N, as before. Furthermore, X; and
Y, are independent Gaussian variates, since 5;(¢) and 5 () are orthogonal. The root-
sum square of independent Gaussian variates is Rayleigh distributed, as developed in
Chapter 2. Thus,

2 _

HAE ;_ze__,gg:_ 2 >0, (3.421)

The only difference when considering Z; is that X, has a mean value given by
# = 2E,/Np. The density function for

Zn=(X;+ 7)) (3.4.22)
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Figure 3.4.4 Noncoherent receiver for M = 2 signals,
has the Rician form
z J1%4 (21121202
f(olSe) = a—‘;r(, (;-g)e Gt s, (3.4.23)

We encountered these two density functions in Chapter 2, and a sketch of the probability
density functions is found in Figure 2.2.5.
The probability of error, given that message Sy is sent, is

oo o0
P(€|S0) = P(Z, > Zo|Sp) = f f f (20, 21180) dz) dzo. (3.4.24)
4] Ja

The random variables Z, and Z, are independent because their respective noise variables
are independent, which in turn follows from the orthogonality of the two signals. in Ex-
ample 2.7, we evaluated the integral of (3.4.24) and found it to have the simple result that

1
P(€lSo) = Se™* Ho!, (3.4.25)

where again p = 2E;/Ny and 0% = 2E,/Np. By symmetry, P, = P(¢|Sp) = P(€lS)),
and substitution for u and o2 gives

1
P, = Ee‘f"n"", (binary orthogonal, noncoherent detection, AWGN) | (3.4.26)

{We have also used E, = E; for the binary case.) It is perhaps surprising that, despite
the more complex receiver compared to the coherent case and the more exotic probability
density functions involved in the derivation, the expression for error probability has a
very simple analytical form.
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We should now compare the performance of noncoherent detection of binary or-
thogonal signals with that of coherent detection. At Py = 1073, noncoherent signaling,
upon solution of (3.4.26), requires E,/Nq = 13.4 dB, while coherent detection neces-
sitates 12.6 dB. This rather small loss in efficiency is purely attributable to the lack
of phase information in the demodulation. The two options are, in fact, exponentially
equivalent, as may be seen by substituting the upper bound for the Q-function (2.2.15b)
in the expression for coherent detection of orthogonal signals.

Insight into the large SNR equivalence of coherent and noncoherent demoduiation
can be obtained by noting that the decision statistic Zo, conditioned on transmission of
message S;, is a Rician random variable. For large SNR, this random variable becomes
nearly Gaussian, with mean i = 2E;/Ny and variance ot = 2E,/Ng as well. Z, is Ray-
leigh distributed, but in the positive tajl region the p.d.f. varies exponentially as e/
Thus, for large SNR the hypothesis testing problem is nearly that of deciding between
two Gaussian distributions with different means. This test has error probability given by
the coherent demodulation result.

A less favorable view toward noncoherent detection is that the best noncoherent
binary scheme is about 3.8 dB inferior at error probability 1073 to the best coherent
binary scheme (antipodal signaling). The real energy penalty for not knowing carrier
phase is thus more than a factor of 2 in the M = 2 case. Indeed, we would not expect
to see binary orthogonal signaling with coherent demodulation in practice, for if phase
synchronization is available, an immediate 3-dB gain is available by using antipodal
signals. We are about to see, however, that the efficiency difference between noncoherent
and coherent detection schemes gradually becomes small as M increases.

3.43 Performance Analysisof Noncoherent Detection of
M -ary Orthogonal Signals

The extension to the M-ary orthogonal case is now straightforward, although the resulting
error probability expressions are less compact. The optimal receiver now includes M
noncoherent correlators acting in parallel, generating random variables Zo, Z,, ..., Zy_1,
and the demodulator selects the index of the largest statistic.

As before, we assume sy(t) is transmitted. By symmetry, the symbol error prob-
ability P; will be just the conditional error probability, P (e|Sp). As in the binary case,
Zy will have a Rician density, while the remaining Z; will have Rayleigh densities. Ali
variables are independent.

We seek the probability that all Z; are less than Zy, which is the probability of
correct decision. We attack this by fixing Zy = zq, calculating the conditional result, and
then averaging over zy. First,

P(ClSo,z0) =P (all Z, < zp,i=1,2,..., M ~ 1|8p)

o z _,2/20.2 M- '
=( fo L dz) (3.4.27)

= [] bl e_:(z)/zag]u"l
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Now averaging against the Rician p.d.f. for 2, we obtain .

o . . .2 2 M-
_ =0 Ko {0 M _ amnie? . 4
P(Clsn)—L S0 (5 )exp[ (————202 )] [1-e2 |7 az. 3a28)

The bracketed term raised to the power (M — 1) in (3.4.28) may be expanded using
the binomial expansion. Then, integrating term by term and applying the same result
developed in the binary case (Example 2.7), we obtain

M-1 _lj+|
P5=1—P(C)=Z:( )

j=1

CHlemtESF DM (3.4.29)
J+r
which may be computed without resort to special functions.

Figure 3.4.5 illustrates the dependence of P, on M and E,/No. again showing
that energy efficiency improves with increasing M. Also, note that by comparing Fig-
ures 3.3.17 and 3.4.5, for large M the noncoherent detection penalty becomes small. For
example, o obtain P, = 10°° with M = 64 and coherent detection requires E, /N, =
6.5 dB, while iterative solution of (3.4.29) for noncoherent detection yields E,/Ny =
6.9 dB, a difference of only 0.4 dB. (We could correctly argue that we should instead
be comparing better coherent schemes, that is, biorthogonal designs, which could not be
employed with noncoherent detection, but the incremental gain is still small for large M .)

The bit error probability, P,. can be related to symbol error probability, P, in
exactly the same way as we did for coherent detection:

M
T2M-=1)

This again follows from simple counting arguments.

We may correctly infer that as M — oc the efficiency of M -ary orthogonal signal-
ing with noncoherent detection also approaches the channel capacity limit for the AWGN
channel. Specifically, by grouping message bits together into M -ary orthogonal symbols,
as long as £,/Ng > —1.6 dB, arbitrarily small probability of symbol (message) error can
be achieved as M increases. This reveals that lack of phase information actually is not
fundamentally detrimental. The problem with this approach to efficient communication
is again one of exorbitant complexity.

P Ps. _(3.4.30)

Example 3,11 8-ary FSK Transmission

Suppose that a radio communications link for a wireless factory network is designed to
transmit data at a rate of 256 kbps on a carrier frequency around 1800 MHz. One option for
modulation is 8-ary FSK. Let’s design the signaling parameters and analyze the performance.
Information is transmitted in 3-bit chunks, so the required symbol rate will be R, =

256/3 = 85.3 ksps. Every 3-bit symbol produces a certain frequency. near 1800 MHz,
either by selecting from a bank of oscilfators or. more likely, by frequency modulating a
single oscillator. (The modulation is normally done at a lower frequency: then the signal
is “up-converted.™) For the sel of eight signals 1o be mutually orthogonal, we must select
a signal frequency spacing 2Af equaling some muliple of R, when the detection is not
phase coherent.>> Thus. picking the minimum separation, we have a signal sel that spans
21t is a curious fact that when phase coherent reception is adopted the spacing can be half as large and

orthogonality is still maintained; sec Exercise 3.4.5.
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Figure 34.5 Symbol error probability for noncoherent detection of M-ary
orthogonal signais.

a region of 7R, = 597 kHz. The exact form of the power spectrum is complicated,
depending on whether phase continuily exists in the modulation process, but the bandwidth
is roughly 8R;. :

To achieve a bit error probability of P, = 107% requires a symbol error probability
Py = 1.75-107% by (3.4.30), and from Figure 3.4.5, we determine that the necessary
En/No = 10 dB. If the known noise spectral density at the input to the demodulator is
No/2 = 10792, then the required signal power at the same point in the receiver is

E
P = ]—rf = 107%(256 - 10%) = 0.26 mW. (3.4.31)
b

Several demodulator implementations are conceivable, but the easiest ts probably a
bank of bandpass filters, approximating matched filters, operating at a receiver intermediate
frequency of perhaps 5 MHz with frequency spacing of 85.3 kHz. Envelope deteciion,
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sampling, and choice of the largest statistic provides the symbol decisions. Another imple-
mentation involves conversion of the signal to baseband, followed by sampling and calcu-
lation of the DFT. Decision is in favor of the frequency producing the largest magnitude-
sguared result.

3.5 PHASE COMPARISON OR DIFFERENTIALLY COHERENT
DEMODULATION OF PSK

We have just seen that certain sets of signals may be detected without a synchronized
carrier phase reference, provided the unknown channel phase is siowly varying, It seems
paradoxical to consider this for PSK signaling, but a noncoherent receiver can indeed
be implemented. The key is to encode information in phase differences and then use
phase differencing at the receiver to demodulate. Encoding is in fact the same as for
differentially encoded coherent PSK, as described in Section 3.3.4, but no phase-tracking
loop is used at the receiver. Instead, only reasonably accurate frequency synchroniza-
tion ts required. This general approach is generally referred to as M-ary DPSK in the
literature.” 1In the binary case, we will find that DPSK is only slightly less efficient
than PSK, providing a means of doing noncoherent detection with near-antipodal effi-
ciency.

In M-ary DPSK, we let the carrier phase angle of the modulator for the nth symbol
interval be specified by the recursion

2r
6, = (9,,_| + xnﬁ-) . modulo 2x, (35.1)

where x,, is a modulator input symbol contained in {0, 1, ..., M —1}. This same recursion
was introduced in Section 3.3.4 for similar reasons.
The transmitted signal is the PSK waveform

¥

2E, 12
(1) = (—T—-) cos{w.! + 6,), nT, <t <(n+ HT,. (3.5.2)

Thus, we implement M-ary PSK modulation, but with the phase differences 8, = 9, —
8,1, modulo 2, defined by the symbol sequence {x,}. The differentiaily encoded signal
has the same statistical properties as the sequence x,,, and thus the spectral properties of
M-DPSK are identical with those of A-PSK.

This mapping technically violates the earlier definition that modulation is a mem-
oryless process—here the current phase apparently depends on all the previous symbols.
However, the memory induced here is such a simple form that we will include DPSK
in our list of modulations. In particular, the sets of waveforms produced by M-ary PSK

-and DPSK modulators are the same.

>} The nomenclaure varies; some systems described as DPSK arc in fact coherently-detected, differentially-
decoded PSK.
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3.5.1 Structure of Optimal Demodulator

At the receiver, due to an unknown (but assumed fixed) phase offset 6 and the addition
of white Gaussian noise, we observe

2E0\'"
r() = ( = ) costaw t + 8, +8) + n(t). (3.5.3)

by

We first deveiop the DPSK demodulator from intuitive reasoning. As shown in Fig-
ure 3.5.1, using quadrature correlation with cos(w,f) and sin(ew.!) to produce the in-phase
and quadrature estimates of the signal phasor, followed by an arctangent operation, the
phase angle of the received signal over one symbol can be estimated:**

¥ = tan™' (r—) (3.5.4)
r

[

This signal phase, in the absence of noise, is the sum of the unknown reference phase,
#. and the modulation phase, 8,. If 6 does not change appreciably over two symbols,
we may form the differences of the measured phase, derived from consecutive intervals,
to provide an estimate of the phase difference &,, which conveys the information. To
. see the basic principle, write y, = 6, + 6 + 8,, where B, denotes the phase error due
to additive noise. A similar expression applies at time n — 1. The estimated phase
difference is

Sn =V¥n= Vo1 = 6 — 6y + ﬁn - ﬁn——l = ‘Sn + ﬁn - ﬁn-—l- (355)

(All additions and subtractions are modulo 2m.} Thus, the unknown phase angle 6
vanishes, and the data symbol may be correctly recovered by quantizing 8, into one
of M equiangular decision zones, using the rule (3.5.1), provided the difference of the
measurement errors is less than /M in magnitude. Notice the phase estimate derived
from the previous interval is always employed to decide in the present interval, and

cos w,t
rit) é Ien
J o (mod-2n)
A A
tan'| 9o + | Dec !
(ro/re) v_?
.[ .){ o Delay -
fsn ¢n—1
sin w.t

Figure 3.5.1 General M-DPSK receiver.

?3This happens 1o be the maximum-likelihood estimate [26).
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only one start-up symbaol is nceded to begin the process. An example of encoding and
demodulation for M = 2 is provided in Figure 3.5.2.

Information Sequence o0 1 1 0 1

Carrier Phase at D0 0 0 =rn
Modulator
Output

Carrier Phase at 0 0 n 0 O n

Demodulator + + + + o+ o+
Output 6 6 06 0 6 0
{no noise}
Phase Difference 0 nn 0 «x
Data Output 01 1 01 Figure 3.5.2 Encoding/decoding

example for binary DPSK.

Although this signal processing is intuitively well grounded, it is possible to ob-
tain the adopted receiver directly from principles of optimal noncoherent detection. We
formulate the decision problem as a problem in unknown phase reception where the
observation consists of two consecutive symbol intervals. M hypotheses are to be testad,
each corresponding to a certain phase difference. The optimal noncoherent receiver
would, as in Section 3.4, form noncoherent correlations for each of the M hypotheses
by integrating over two symbol intervals in each quadrature arm and then squaring and
summing. The decision is then in favor of that noncoherent correiatlon producing the
largest statistic, as in Section 3.4.

To simplify the structure of such a receiver, we first express the two quadrature
correlations obtained by 27, -second integration for each signal hypothesis:

(n— 1T, . T,

Xipg= ] r{t)cosew.rdt + [ r(tycos(w.t + 8; 4} dr,
(r=-2)7, (n—-1T,

(3.5.6)

{(n—1T, nT,
Yip= f r(t)sinwdt dt + f r(t)sin(w.t + 6; ) dt,
=27, " Ji—nr,

where now §; , denotes the ith hypothesized phase increment at time #. The decision
statistic for the ith hypothesis then becomes, from Section 3.4,

2
i

Zo=xl, 43, i=01... M-l (3.5.7)

Simple trigonometric manipulation shows that these decision statistics are related to the
quadrature correlator variables r., and r,, in Figure 3.5.1 by

fn=lro 41, cossi = rosindi, |’ +[r,, +r, cos8,+r,sing, ). (3.582)
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By invoking phasor notation for the two consecutive measurements, we can see that o
is equivalent to

2= r A r e M a0 M, (3.5.8b)

where r, = r., + jr,, represents the integrator output at time #. Equation (3.5.8b) can be
interpreted as rotating the previous phasor by the hypothesized phase advance and then
summing with the current phasor and forming the magnitude squared. Upon expanding
the magnitude-squared expression in (3.5.8b) and eliminating common terms for each
statistic, we may equivalently

maximize Re r,r,_ e >"/M}, - (3.5.92)

a1
If we interpret r, as a vector in the plane and r7_,e'*"'™ as another, the decision should
maximizer, - {r,_je* 77/M), (3.5.9b)
i

which is just the vector inner or dot product between the current measurement and the
rotated previous measurement vectors. Thus, optimal processing can be reinterpreted as
follows: rotate the first phasor by the hypothesized phase advance; then compute the
vector inner product with the next phasor and decide in favor of the largest.

Still another formulation of the optimal differential detector folfows from applying
Euler’s relation to (3.5.9a), yielding

maximize |r,]ir, ;| cos (y,, — V) — 277;—') L3.5.10)
from which it becomes clear that the magnitudes of the phasors are irrelevant, and only
8x = ¥, — yn—1 is important. Thus, the phase-differencing demodulator is optimal when
the decision is based on two consecutive symbol intervais.

For small M. the DPSK receiver can be implemented in a manner that avoids much
of the complexity of Figure 3.5.1, in particular the inverse-tangent operation. In the
binary DPSK case, (3.5.10) simplities to testing whether the measured phase difference
8, exceeds m/2 in magnitude. If so, then the decision 1 is produced: else 0 is decided.
Equivalently. we test whether the vector inner product of two consecutive (nonrotated)
phasors is negative or positive. In terms of the data produced within the demodulator,
we have the test

0
>

Fe e, . ¥l < 0. (3.511)
i

which defines the binary receiver of Figure 3.5.3a. Similarly. in the M = 4 case, the
processing may be interpreted as sign tests on the vector inner product and cross product
of consecutive measurements (Exercise 3.5.3).

An altermative binary DPSK receiver is shown in Figure 3.5.3b, involving a front-
end filter matched to the signal over one interval, that is, a constant phase sinusoid
of duration T, seconds, followed by a delay line and a sampled phase detector. (It is
imperative that the delay be nearly equivalent to a multiple of 27 radians at the operating
center frequency of the detector, certainly an implementation difficulty.)
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Figure 3.5.3 Two implementations of binary DPSK demodulator. (a) base-
band inner product form; {(b) matched filter/delay line form; (c) wrong imple-
mentation of binary DPSK demodulator.

In the detector of Figure 3.5.3b, all essential noise filtering is performed by the
matched filter. Prevalént in textbooks, but suboptimal, is the receiver shown in Fig-
ure 3.5.3c, which reverses the order. Notice that the phase detection step (multiplication
of two bandpass signals) indicated in Figure 3.5.3b is nonlinear with respect to the input,
and we simply cannot commute the order of the operations. Although this receiver pro-
duces correct decisions for sufficiently high SNR, its pesformance is substantially worse
than the optimal DPSK receiver at SNRs of interest.

3.5.2 Performance Evaluation for M -DPSK
To evaluate the demodulator error probability, we consider first the binary case. One
helpful way of visualizing binary DPSK is as a binary orthogonal design lasting 27,

seconds. Each interval uses the previous bit as a phase reference, so we might write the
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