Figure 2.5.1b  Fx, x, (xp. x1: {p. 1)
is measure of sample paths for which
X(to) < xg and x{11) < xj.

This pair of random variables also has assoctated moments, notably a correlation,
that depends not only on the time separation, but in general on absolute time as well.
To carry this further, we can imagine nth-order descriptions, for any n, by thinking of
the collection of random variables defined by inspecting the process at » time instants,
g, 8y, ..., 0]

We have alluded to the possibility that the description of the process may depend on
the choice of reference times, as well as the time differences. If the nth-order distribution
function is independent of time reference, that is, the functional form is identical if all
time instants ¢; are shifted by a common amount A, for any A, then we say the process is
nth-arder stationary. If the process is stationary for all n. it is strictly stationary. In the
latter cases, any probabilistic question we could pose about the process would produce
the same answer whether computed now or an arbitrary time earlier or later.

Two such probabilistic averages we could consider are the mean function,

E[X()) =mx(@) (2.5.1a)
and the autocorrelation function
Rx(t.t + 1) = E[X() Xt + 1)], (2.5.1b)

which is the correlation between the random variables X (¢) and X (r + 7). Notice that
letting T = 0 in (2.5.1b) gives Ry (¢, + 7} = E[X?(1)], which is the mean-square
value of the process at time ¢. Electrical engineers often refer to this quantity as the
(instantaneous) power of the process, since the mean-square value is the electrical power
if X{(¢) is a voltage signal appearing across a 1-ohm resistance.

In terms of probability density functions, these process statistics would be com-
puted as

my(1) = EfX(D) = fxfx(x; dx (2.5.2a)

and
Rx(t,t+ )= E(X()X(t + 1)}
' (2.5.2b)
= f[xoxlfxu,x‘(xn,xl;t,t-i- T)dxpdxg.

(We emphasize that these integrals are not integrals over time, but over values of the
random variables.) For a strictly stationary process, (2.5.2a) would produce a constant
my ., while (2.5.2b) would produce a resuit depending only on 7, since the joint p.d.f. is
only a function of time difference v and not absolute time .
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2.5.1 Wide-sense Stationarity, Autocomelation Function,
and Power Speciral Density

Strict stationarity is a stronger property than we generally require for systems analysis
and difficult to establish in any application of the theory. A weaker condition, adequate
for most applications in communications and signal processing, is that of wide-sense
stationarity. A process X (1) is wide-sense staabnary” if its mean and autocorrelation
function are independent of absolute time; that is, for any ¢ and

E{X(#)) = myx (2.5.3)
and
EIX()X( + 1)) = Rx (7). (2.5.4)

The utility of this condition is twofold. In stable, time-invariant systems, input pro-
cesses that are wide-sense stationary produce output processes which are also wide-sense
stationary, and the required first and second moment functions of the output process
are often easily found. Second, if the process in question is Gaussian, then wide-sense
stationarity implies strict-sense stationarity, since we have seen in Section 2.3 that the
nth-order distribution for a Gaussian process depends solely on the mean vector and
covariance matrix, both of which are time invariant given wide-sense stationarity.

Now that we have introduced a way of abstractly visualizing stochastic processes,
the question next arises, “How are pfocesses actually specified?” Thete are three principal
ways.

1. We can describe the ensemble in functional form, with each sample function having
a dependence on some set of random variables.

2. We can decree the process to have certain statistical behavior; for example, we
may assume that receiver noise in a communication link is Gaussian and wide-
sense stationary with a given mean and autocorrelation function.

3. We can construct the process phenomenologically, for example, by specifying a
random process X{¢) to be the ensemble of binary valued waveforms that switch
values with probability % every microsecond, with the transition time closest to
t = 0 uniformly distributed over a 1-microsecond interval. (The reason for the
randomization of the transition instants will become clear shortly.)

We proceed now to study an example of each type of specification, encountering
some subtleties and seeing more clearly the description of random processes.

Example 2.16 Sinusoidal Processes

Let X (1) be the process defined by X (1) = A sin(wos), where A ~ U[~1,1], and ey is
a fixed value. Thus the ensemble.is a set of sinusoids all crossing zero at common times,
but having random amplitude A, viewed as the outcome of some experiment. Two sample
- functions are shown in Figure 2.5.2a. Consider the first-order probability density function:
at + = 0, or multiples of a period later, all the sample functions have zero value, hence

13 Wide-sense stationarity is also referred 1o as weak-sense stationarity.
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Figure 2.5.28 Two sample functions
of process for Example 2.16.

the p.d.f. at these times is the Dirac impulse; that is, fx(x,t = n2x/wg) = §{x - 0).
At tirres corresponding 10 a quanter-period later than these instants, the process values are
X(w,t) = A(w), so X(t) has a probability density uniform on [—1, 1]. Further study
shows the density is always uniform, but with support that is expanding and collapsing,
as in Figure 2.5.2b. Thus, the process described is not even first-order stationary. Note,
however, that the mean function mx (¢) is zero for all time, a result of the symmetry of the
time-varying density about zero.

3(x) fix; t =0}

fix; t = 2n/8myg)

-0707 0 0.707

Fix; t = 2r/4my)

Figure 25.2b First-order
(time-varying) density functions for

|
—
ol 4.
—

Example 2.16.

A seemingly innocuous change of the process description gives the stationarity issue
quite a different outcome. Let X () = A sin(wof + ©), with A and wy as before, but with
© independent of A and uniformly distributed on [0, 2x). This merely applies a uniformly
distributed zero-crossing time to each preceding sample function. The first moment func-
tion is

E[X(1)] = E[Asin{wp! + )]
= E[Asin(wpi) cos(Q) + A cos(wpt) sin(@)]
= sin{wyl ) E[A cos{®)] + cos(wot }E[ A sin(©)], (2.5.5)

which follows from pulling nonrandom quantities outside of expectations. Because A and
© are independent, we find E£[A cos(@)] = E[A]E|cos(®)] = 0. (Both expectations are
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zero in the final step, but either is sufficient.) Similar argument for E[A sin(®)] yields a
time-invariant mean, E(X (1)] = 0.
Now consider the autocorrelation function:

Rx(t,t +1) = E[X ()X (t + 1)}
= E[Asin{lwp! + @) A sin(wp(z + 1) + O))

A2 A?
=E l:? cos(wor)] ~E [7 cos2wp! + weT + 29)]

2 2
=F [%—] cos(agr) — F [%—] E [cos(2wor + wnT + 20)). (2.5.6)

The second expectation is zero, as before, because of the uniformly distributed phase angle,
@, while the first expectation involves the second moment of the uniform random variable
A. Since E[A”] = {,

1
Ryt +1) =Rx(1) = P cos(wgt), 2.5.7)

showing that the process is now at least wide-sense stationary. Further analysis would show
that in fact the process is str t-scnse stationary as well.

Example 2.17 White Gaussian Noise

As an example of the second method of specifying processes, we define X (¢) to be Gaussian,
with zero mean and with autocorrelation furction given by Rx(r) = (Ng/2)8(t). where
No/2 is an arbitrary constant.'* Saying the process is Gaussian means any nth-order density
function is of Gaussian form, (2.3.11). Furthermore, each random variable (sample) has
zero mean, and variables (samples) at distinct time instants are uncorrelated by definition
of the autocomrelation function. Because these variables are jointly Gaussian, they are
independent. There is a technical problem with this process in that X (7) has an infinite
mean-square value {recali from the definition of autocorrelation function that Ry(0) =
EIX%()h, or equivalently infinite power, and thus this process cannot exist in the physical
sense. However, this noise process serves as the archetypal model for noise processes in
commurication theory, as discussed in Chapter 3.

Example 2.18 Random Binary Waveform

Imagine an infinite set of binary random number generators, which produce outputs A or

- ~A every T seconds, called the bit duration. We model the values associated with each
generator as a equiprobable binary random variable X, with successive values defined to
be independent. This provides a construction of a random sequence, X,. Further to each
sample function, or generator, we assign a random time offset a, which over the ensemble
is uniformly distributed on the interval [0, T') and independent of X, for all n. The random
binary wave is then defined as

= t~nT —o
X@y= Y Xprect — (2.5.8)

H=—00

"4The reason for the inclusion of the factor of 2 in the constant will be clear shortly; Ng/2 is conventional
communication theory notation for the intensity of white noise processes.
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where rect[f/T] denotes the unit-height rectangle pulse on (0, T) seconds. Figure 2.5.3a
shows several sample functions of this process. A physical realization of this process is a
collection of binary random waveform generators, each clocked at the same rate, but with
different time offsets.

X(mh t)
A
“j & I \ \ L \
T 2T 3T
_.A —
Xy, t)
"; %z 7 1 1 j ;
T 2T 3T
X{on, [
_; il Il 1 1 | !
T 2T 3T

Figure 2.5.3a Sample functions of random binary wave. Each sample func-
tion assigned a random switching epoch a.

We now proceed to derive the mean and autocorrelation functions for this random
process. The mean value function, since the random variable X (¢) is binary valued, is

E[X(D)=A-P(X(1) = A) + (—A) - P(X (1) = —A)
==-Z o (2.5.9)

Also, the aulocorrelation function is
Rx(t.t + 1) =FE[X(DX (1 +1)]
=A2 PX(N=X(+D)- A>. PIXit) £ X(t + 1))
=AR-PIX)= XU+ 1) - L. (2.5.10)

The latter probability requires some careful interpretation—we are seeking the probability
of the event that the sample functions are identical in sign when examined t seconds apart.

First, consider the case v > T, which implies that for each sample function there has
been at least one switching instant in [, ¢ + 7). This really means that the random variables
attached to the two observation times are independent r.v.’s. Thus, P(X (1) = X ¢+ = %;
that is, just as many sample functions have identical signs as opposite signs at the two time
instants, on average. Thenfort > T, Ry(t,t + 1) = 0.
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For T < T, the probability that the samples have identical sign is
P(X(t) = X{t + 1)) = 1- P {no switch instant in (¢, ¢ + 1))

1
+ 7 P (switch instant in (1, t + 1))

bt I |z
_]-(l-—-"f-)‘l'z' T

el
_1_ﬁ‘ |t |<T. 2.5.11)
We have used the fact that the probability of a switch instant occurring in an interval of
length v is /T fort < 7T.
Substituting results for the two cases into (2.5.10) produces

af  _ted
Ry()={ A (l T ) leh =T, (2.5.12)

0, otherwise,

which is the triangular autocorrelation function shown in Figure 2.5.3b. In other words, the
random binary waveform process exhibits zero correlation for time separations longer than
one bit interval and lin-wly decreasing cormrelation for time separations less than one bit
duration. Note also that Ry (0) = A2, the mean-square value of the process.

Rx(f)
AZ

-T T T

Figure 2.5.3b Autocorrelation function of random binary wave.

Communication engineers have long found it useful to describe signals in the
frequency domain through the use of Fourier series for periodic signals and the Fourier
transform for aperiodic signals. A frequency-domain statistical description for stochastic
_processes is provided by the power spectral density, or simply power spectrum, G x(f),
defined to be the Fourier transform of the autocorrelation function Ry (t):

Gx(f) = f Rx(t)e /" gz, (2.5.13a)

>}

G x (f) is an even, nonnegative function of the frequency variable f. (See Exercise 2.5.1.)
The inverse transform relation is

Ry(1) = f Gx(f)e*  qf. (2.5.13b)

oC
Equations (2.5.13a) and (2.5.13b) are called the Wiener-Khinichine relations.
Since we have given Rx(0) the significance of power in the electrical sense,
(2.5.13b) shows that power is equivalently the integral of the function G x( f); hence
the appropriateness of the name power spectral density, for it conveys the distribution in
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frequency of the power in a random process. Specifically, 2G x(f) df is the power of
the signal located in the infinitesimal frequency range (f, f + df). Power spectral den-
sities may include impulse components (called spectral lines), which must correspond
to periodicities in autocomelation function. For example, the autocorrelation function
derived in Example 2.16 was Ry(7) = (A2/2) cos(axt). The Fourier transform of this
function gives

AZ
Gx(f)= T[s(f — fol +8(f + fo)l. (2.5.14)

where fy = wo/2m. This reveals, as expected, that the entire power in the random signal
is localized at one frequency. Furthermore, integration of (2.5.14) gives that this total
power is A%/2, as expected.

Example 2.19 White Noise (continued)

Having defined white Gaussian noise, we can now see how the name “white” derives. Recall
the autocorvelation function was specified as Rx (1) = {Ng/2)6(7). The Fourier transform of
the Dirac impulse is a constant for all frequencies: Gx(f) = No/2 walts/hertz, meaning that
the process has equal power in every incremental band of frequencies from audio frequencies
through the x-ray region and beyond! In analogy with white light, said to contain an equal
mix of all visible colors, or frequencies, we refer to the spectrum as white. This also reveals
the total power difficuity cited previously, since the integral of the power spectrum 1s infinite.
Given thus situation, we may ask, “Why even consider such a process?” The answer is that
white noise serves as an appropriate model when the noise process has a power spectrum
that is wide compared to that of the signal of interest and constant over this region. The
actual noise process, however, has finite power by virtue of its spectrum decaying to zero
well outside the region of interest.

To compute the neise power contained in any finite band of frequency, { f. fi + B],
we integrate the (two-sided) power spectral density over both the positive and negative
frequency regions, obtaining (Ng/2)(B + B) = NpB watts.

[t is frequently misunderstood that “white” and “Gaussian” are synonymous. It is quite
possible, however, to find Gaussian stochastic processes with nonwhite power spectrum;
similarly, a process may have a constamt power spectral density, but not have Gaussian
density functions. :

2.5.2 Stochastic Processes in Linear Systems

A linear, time-invariant, continuous-time system can be specified by its response to a
unit impulse 8(z), which is called the impulse response, h(t). Equivalently, we may
specify the system’s frequency response function, H ( f). which is the Fourier transform
of the impulse response. The use of these functions in system analysis for deterministic
signals should be quite famuliar; in particular, if x(z) is an input to a linear system and
y(1) is its output, then the convolution integral relates these as

¥ =.f Xt —~t)h(r)dr. (2.5.15a)

e w]
Aliematively, we may express the input/output relation in the frequency domain by

Y(f)=X(HH(f). (2.5.15b)

where Y (f) and X (f) are the (generally complex) Fourier transforms of the output and
input signals, respectively.
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The same expressions pertain for stochastic inputs, but they are not useful in
themselves, for the resultant functions in either time or frequency domains must be
interpreted as stochastic processes themselves. What we can do, however, is give a
statistical description of the output process in terms of the input description and the
system response.

If we take expectations of both sides of (2.5.15a) and then interchange the order
of time integration and expectation, we find that

= hMoydr
m m"‘L,, (*) (2.5.16)

= mxH(O).

This ratifies what we would probably anticipate: the mean or d.c. value of the output
process is the mean of the input, scaled by the zero-frequency gain of the system.
Continuing with the autocorrelation, we write the output autocorrelation as

Ry(t.t+1)=E[Y(OY(# +1)]

=E UX(: —a)h(a)dafx(t+ T - BM(ﬂ)dﬁ] (2.5.17)

= ffE[X(t ~a)X(t + 17— B)h(a)h(B)dadB.

The expectation in the integrand is just Ry (1 +-a—B), since the process X (¢) is wide sense
stationary. We substitute this into (2.5.17) and then recognize after change of variables
that the integral is an iterated convolution operation, obtained by first convolving the
autocorrelation function with the impulse response and then convolving this with the
time-reversed impulse response. Specifically,

Ry(t.t + 1) = Rx (1) * h(t) x h(—1) = Ry (1), (2.5.18)

where again + denotes the convolution operation. Note that the output process is wide
sense stationary if the input process is (and the system is stable and time invariant).

This input/output behavior is more easily comprehended in the frequency domain,
obtained by taking the Fourier transform of both sides of (2.5.18):

Gy{(f}=Gx(YH(FIH*(f) = Gx(f)| H(f) 1. (2.5.19)

(Here the superscript * denotes conjugation of a complex variable.) This reveals that
the output spectrum is shaped according to the input spectrum, weighted in frequency
by the power response of the linear network. Such effects underlie the ability of a
filler in a receiver to pass certain portions of the frequency band and perhaps reject
large amounts of unwanied noise. Figure 2.5.4 summarizés the important relations for
wide-sense stationary signals.acted on by linear systems.

At this point, we can reconsider stochastic sequences and merely state analogous
input/output relationships for finear discrete-time systems. Detailed treatments are found
in {1], [{3], and [4]. Distribution functions and p.d.f.’s are defined at discrete points in
time. The autocorreiation sequence of a wide-sense stationary random sequence {X,] is
defined as

RX(L) = E[erXtH—LL (25203)
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Gylf} = GF)IH(F)I? by stationary random process.

and the power spectrum of the discrete-time process is defined as the discrete-time
Fourier transform of the autocorrelation sequence:

Gy(fr=Y_ Rxlkye™ "/t (2.5.20b)

=00

The 1nput/output relation for power spectra in linear, time-invariant, discrete-time systems
can be shown to be

Gy(f) = Gx(fIH(H (2.5.21)

where A (f) is the discrete-time Fourier transform of the system’s impulse response
sequence, {f,}:

20
Hify= Y hpes2min (2.5.22)
n=—ag
The power spectra for discrete-time sequences are seen to be periodic with period equal-
ing the inverse of the sampling interval, a manifestation of the aliasing phenomenon.
The exercises provide some simple applications of these properties of stochastic signals
in linear systems.

2.5.3 Time Averages versus Ensemble Averages

We have been characterizing random processes by their ensemble averages, that is, by
imagining the collection of random variables defined by examining the entire ensemble at
various time instants. Thus, a statement about the autocorrelation function for a random
process is a statement about the behavior of the ensemble samples taken at two fixed
time instants. This would be computed by

E[X(I)X(f +1)] = f[x|x2f(x|.x2; t !+ r)d.r.dx;. 2.5.23)

In the practical situation of, say, transmitting a message through a communications link,
we presume that we are provided a sample function from the source (the message),
and the channel provides soffe random corruption in the form of noise, time-varying
channel characteristics, or the like, but we deal with one sample function from this
large process. The logical question is whether ensemble averages tell us anything about
similar averages obtained from a single sample function of the process. For example, we
will devote considerable attention to predicting the probability of error associated with
various kinds of signaling alternatives studied in the rest of the book; this mathematics
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is implicitly an ensemble viewpoint. Can we assume that the average error probability
measured over time from one sample function will be equivalent? Or can we count
errors associated with any single sample function we are given and perform probability
calculations based on this empirical data?

We shall be a bit circular here and say that, if a process possesses certain ergodic
properties, ensemble averages of traditional probability theory may be equated with time
averages, in the limit of long averaging time. To illustrate, recall the usual way to
estimate the mean of a process, through time averaging, is by means of a T-second
sliding average of the sample function:

1+T/2
<X)»r == X (w, s)ds. (2.5.24)
T Jiorp
(We employ the brackets <> to denote time averaging.) Notice that the time average is
itself a random process; the results are dependent on the sample function for which av-
eraging is performed. However, for a stationary mean-ergodic process we can claim that

lim <X (¢)>7 = m,, (2.5.25)
T—oc

where the equality will be interpreted in the mean-square sense, that is, the second
moment of the difference between the time averaged estimate and the ensemble mean
myx goes to zero as T increases. Similarly, other time-averaged statistics, such as vari-
ance, correlation, and histograms/distribution functions, when averaged a sufficiently
long time, will approach the corresponding ensemble quantity if an appropriate ergodic
property holds. This equivalence is what makes probability theory a useful tool for en-
gineering applications, but it is important to understand the conceptual leap we make
when equating ensemble averages with time averages.

What makes a process have ergodic properties then? Basically, the requirement is
that any single sample function of the process, over time, should reflect the nature of the
~ ensemble. Probabilists express this as a mixing property, and there are various technical
requirements for processes to possess ergodic properties in various forms, For example,
for X (1) to be “ergodic in the mean,” meaning that (2.5.25) holds, we require that the
autocorrelation function be absolutely integrable, that is, f | Ry(r) | dr < o0 [1). We
shall not dwell further on this issue, but assume that the requisite conditions hold for
the processes of interest to possess whatever ergodic properties are needed. To indicate
the subtlety involved here, we discuss a strictly stationary process that is not ergodic
in the mean.

Example 2.20 A Stationary, But Not Ergodic, Process

Consider the random process formed by observing the waveform output of nominally
5-volt power supplies from a stockroom. Some indeed produce S-volt terminal voltage,
some produce 4.8 valts, others produce 5.1 volts, and so on. Some may be defective, in
which case the output waveform is always zero. We assume that each produces a con-
stant voltage for all time, so the ensemble is a set of fixed-voltage waveforms, as indicated
in Figure 2.5.5. Notice that the ensemble average mean of the process may be 4.9 volis
(reflecting some defective supplies), whercas a lime-averaged estimaie (2.5.24) converges
immediately to the voltage associated with the pamcular power supply under test. Thus,
even the simplest time average cannot be equated with the corresponding ensemble average
here, and the process is not ergodic in the mean. However, it is clear that the process is
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stationary, since the statistical description is cerainly time invariant. In fact, the p.d.f. for
n samples taken at any distinct set of time points is

XXX oo X)) = fr(x)8(xz — x1)8(x3 —x1) -+ 8(xp — X1), (2.5.26)
signifying that the n samples are identical (for each sample function), with a marginal p.d.f.
fx ().

/
5.1
i
y
4.8
t
5.0

Figure 2.5.5 Sample functions of
t power supply process, Example 2.20.

2.5.4 Karhunen—-Loeve Series Representation for Random
Processes

In the study of deterministic signals, especially periodic signals, orthogonal series ex-
pansions have played a prominent role in analysis. The preeminent case is the represen-
tation of signals by weighted sums of sinusoids or complex exponentials, the familiar
Fourier series. This choice has special appeal in linear systems analysis, since sinu-
soids are eigenfunctions of linear systems in the steady-state case; that is, sinusoidal
inputs produce sinusoidal outputs at the same frequency, but with different amplitude
and phase. The latter quantities are specified by the transfer function of the linear
system.

An orthonormal series expansion for a deterministic signal x(t) over some interval
(T;,Ty) is of the form

=) xpult), Ti<t<Ty (2.5.27)

where x, are expansion coefficients and {¢,(t)} denotes a set of orthonormal basis
functions over the time interval (T;, Ty) specified for the expansion in (2.5.27). In
general, we understand the sum to involve an infinite number of terms, although in some
cases we shall encounter in Chapter 3, a finite. sum provides an exact representation. We
shall say more about the convergence in (2.5.27) shortly.
Orthonormality of a set of functions requires
Ty 1, =k

g () (t)dt = b =

. 0 P2k (2.5.28)
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where 8;; denotes the Kronecker delta funciion. Examples of orthonormal sets include
nonoverlapping rectangular pulses and the Fourier set of sinusoids and cosinusoids having
frequencies 27m/T , where T = Ty — T, is the length of the expansion interval.

Because of orthogonality of the basis functions, it follows that the expansion co-
efficients can be computed separately, in any order, as

T,
X, = [ X0ty dt. (2.5.29)
T, .
The representation in (2.5.27) thus provides an association belween a waveform x(¢) and
its expansion coefficients, {x,}, once a basis set has been adopted.

Literal-equality in (2.5.27) cannot be expected for an arbitrary class of signals, since
two signals differing in only a finite number of points would have identical expansion
coefficients by (2.5.29) and hence identical right-hand sides in (2.5.27), yet the two
functions being represented differ. For our purposes, however, it is adequate that, as
more terms are added to the expansion, the integral-square error diminishes to zero.
Specifically, let xy (¢} represent a finite series N-term expansion as in (2.5.27). If we
find that

1y
lim f f(x(r) ~an()Pdt = 0 (2.5.30)
N0 T,
for all signals x(r) in some class, say the class of finite-energy signals, then we say
the set {@,(t)} is complete for the prescribed class. For example, the set of complex
exponentials form a complete set with respect to the class of bounded functions x(¢)
having a finite number of discontinuities and extrema.on [0, T].

The previous discussion has pertained to deterministic signals, but the same concept
is applicable, with care, to stochastic. processes. For example, consider the N-term
expansion

N
Xnl) =" Xugult) (2.5.31)
n=1
as an N-term approximation of the random process X () over some interval. As before,
we envision computing the expansion coefficients as in (2.5.29). Here, however, we must
interpret the coefficients as random variables. Furthermore, the issue of convergence is
more subtle. We say the set of basis functions is complete here if

Nlimoc EIX(t)~ Xn(D)P =0, (2.5.32)

which is to say that the mean-square value of the approximation error approaches zero for
all points in time. Sometimes this is referred to as mean-square stochastic convergence,
or “limit in the mean” convergence.

With determunistic signal expansions, there is some latitude in the choice of basis
set. Usually, the choice is driven by convenience or by special behavior, such as that of
sinusoids in linear networks. In the case of stochastic processes, a convenient choice is
one that makes the expansion coefficient r.v.’s uncorrelated. Thus, we have in mind a
set of orthogonal basis functions that induces the statistical result

E[Xan] = A,,,Sm,,, (2533)
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where §,,, is the Kronecker delta function and A,, is the mean-square value of the mth
expansion coefficient. To see what this requires of the basis set, we write

T T
E[XnXn]l=E [f f X(t)tﬁm(f)dfj X(S)an(S)dS]
T %

(2.5.34)
=ff EIX ()X () pn (1)a(s) dr ds.

Assuming that X () is wide sense stationary, we can write the expectation as Ry (1 — 5),
necessitating from (2.5.33)

A Omn = fd’m(t) [[ Ry (t — s)p,(5) ds] dt. (2.5.35)

For this to hold for a given m and all #, the basis functions must satisfy the integral
equarion
T
Ao B (1) =[ Rx(t — $)dm(s)ds, m=0,1,.... (2.5.36)
T
The possible solutions ¢,,(:) are known as eigenfunctions of the integral equation, and
the A, are the corresponding eigenvalues. Obviously, the solutions depend on the cor-
relation structure of the process.

Oddly, our main interest is not in solving this integral equation, although we
will consider two important cases shortly. More important is the fact that orthonormal
solution sets do exist'> (in general, a countable infinity of solutions), and when these
orthonormal bases are employed to expand the random process, uncorrelated coefficients
are indeed obtained. The corresponding expansion of the form (2.5.27) is known as the
Karhunen-Loeve (K-L) expansion of a random process (8].

It may also be seen from (2.5.29) that the X, coefficients have zero mean if X (03]
has zero mean and that the variance of X, is A,, the eigenvalue attached to the nth
solution. Furthermore, the sum of all the cigenvalues equals the power of the process.
(These results are developed in Exercise 2.5.5). In the important case when X () isa
Gaussian process, the uncorrelatedness of the coefficients renders them independent as
well, providing additional analytical simplicity.

Example 221 Karhunen-Loeve Expansion for Band-limited White Noise Process

Let X (1) be a stationgry, zero-mean process with the spectrum shown in Figure 2.5.6,
We refer to such processes as ideal band-fimited processes, or band-limited white noise
processes. We note that the bandwidih of the process is B hertz and that the total power of
the process is NgB. The autocorrelation function for this process is obtained by computing
the inverse Fourier transform of the power spectrum and is found to be

sin(rBr)

Ry(r) = NogB——"rvr. (2.5.37)
nBr

The Karhunen-Loeve basis functions for this case are solutions to the integral equation
(2.5.36), with (2.5.37) substituted, and are known as prolate spheroidal wave functions {9].

'3See, for example, Courant and Hilbert, Methods of Mathematical Physics. Interscience, New York,
1953,
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-B 0 B f  for ideal band-limited process.

These functions are infinite-duration waveforms, orthogonal over the entire real line, and
over [T /2, T /1), as we require, are strictly band limited and a complete orthonormal set for
the set of finite-energy band-limited signals. Although not simple to express, these functions
are illustrated in {9] for differing BT products. Figure 2.5.7a presents the first four basis
functions for a BT = 1.27, and we can visualize both forms of orthogonality. The eigenvalue
An represents the energy in the waveform ¢,(t) over the interval of length T'. For small
indexes the eigenvalues tend to have value near Ng/2, but it is noted that the cigenvalues
drop sharply for indexes greater than [2BT +17. Two sets of eigenvalue profiles are shown in
Figure 2.5.7b. In other words, when the K-L decomposition of a process is limited to B hertz
and T seconds, only about 2BT + 1 expansion coefficients have significant energy. We might
say that the signal lies in a space with 2BT +1 dimensions. It is also known that the argument
“hardens™ as the time-bandwidth product, BT, increases. That is, the transition from large
eigenvalues to insignificant values is sharper as BT increases; this is seen in Figure 2.5.7b.

Figure 2.5.7a Orthogonal basis functions ¢; (1) for K-L expansion of ideal
band-limited process; BT = 1.27 (1aken from Slepian and Landau [9)).

We might notice a certain similarity of the basis functions shown in Figure 2.5.7a to
the traditiona) sine/cosine basis set. For random processes whose power specira are rational
functions in f2, it is known that for large BT the ¢igenfunctions indeed approach sinusoids,
and the frequencies of these sinusoids approach multiples of 2x/T; that is, the Fourier
basis emerges. Other suitable basis sets for large BT are the sine functions, of the form
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0 | 0.996 1.000 .

1108912 0.9999

2| 0519 0.997

310110 0.961

4 | 0.0083 | 0.748 (28T + 11

5 | 0.0004 | 0.320

6 100607 |

7 0.0061

8 0.0004
Figure 2.5.7b Eigenvalue profiles for
K-L. expansion of ideal band-limited

BT =1.27|8T = 2.55 process [9].

sin(Bt)/{nBt) and time transiates by %B seconds, These are band iimited and orthogonal,
and roughly 2BT may be squeezed into an interval of length T. Here the expansion
coefficients become just the samples of the random process, taken at rate 28 per second,
and the synthesis function is provided by injecting these samples into an ideal low-pass filter.

Example 2.22 K-L Series Representation of White Noise

Recall that the autocorrelation function of white noise is the Dirac impulse, Rx(r) =
(Np/2)3(t). Substitution into (2.5.36) and invocation of the sifting property reveal the
degenerate result that any orthonormal set of functions provides uncorrelated coefficients,
making the formal selection of the basis set not important. Furthermore, the variance of each
coefficient s A, = Np/2, the noise spectral density. The existence of an unbounded number
of coefficients with equal variance again exposes the infinite-power dilemma. Although we
will often invoke white noise as a useful model, we should really have in mind a large, but
finite, bandwidth signal as in the previous example. [Technically, the sum in (2.5.27) does
not converge in mean square in this case, because the original process does nat have finite
power; this does not nullify the claims just made about what occurs when white neise is
projected onto orthonormal functions. )

2.5.5 Markov Models

Markov processes play a key role in modeling the statistical dependencies of many
random process situations. Our interest will be in their use in descriptions of discrete
information sources, for describing channels having memory, and as descriptions of
certain channe! encoding operations.

A random sequence | X} is called first-order Markov if

FOdxe 1 Xz oo oxo) = fludxe-); {2.5.38)

that is, the density function of the random variable X, conditioned on the entire past, can
be expressed exactly through conditioning only on the most recent symbol.'® The beauty
of Markov models is that p.d.f.’s for any collection of random variables can be obtained

1The detinition can be extended to jth-order Markov behavior if the conditioning can be reduced to the
J most recent symbols.

Sec. 2.5 Stochastic Processes . 73



by knowing the marginal p.d.f. for the first variable and applying the conditional density
function iteratively in Ghain-rule fashion to build joint density functions. For example, a
third-order p.d.f. can be constructed as f(x1, Xp, x1) = f(x1) f(xz]x)) f (xa]x2).

An important special case of Markov processes is finite-state Markov sequences,
or Markov chains as these are known in the probability and operations research field. We
define a finite-state Markov system to have a finite number of internal states, designated
0,1,..., 5 — 1, among which the system evolves in time. We let the state at time k be
denoted o%, and at regular time instants the state transitions to another state (or perhaps
itself) according to a set of conditional probabilities:

aij = Plogy) = j o =i). ) (2.5.39)

We assume these transition probabilities are not time dependent. The conditional proba-
bilities can be conveniently summarized by a state-transition-probability matrix A, having
dimension S x S:

A= [a;]. (2.5.40)

Note that since the entries of this matrix are (conditional) probabilities, rows must sum to
1. An equivalent description is provided by a state-transition diagram, as in Figure 2.5.8,
with arcs labeled according to the probability of making the indicated transition.

Figure 2.58 State transition diagram
for discrete-time Markov system. Arc
labels are transition probabilities.

Given a probability distribution on states at time £, Pr = {P(ox = 0),
Plo, = 1),...,P(oy = S — 1)], we consider the probabilistic evolution of system
state in the future. We visualize probability as a commeodity that must be conserved in a
state graph, and we realize that the probability of being in state j at time & + 1 is given by
5-1
POy =J) =) Plox = i)ay,. (2.5.41)
i=0

This relation holds for other states as well, and we may represent the evolution of the
state probabilities in the matrix equation

Pis: = PA. (2.5.42)
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If the Markov system is well connected and regular (essentially meaning that there
are no dead-end or absorbing states) and does not exhibit periodic behavior,'? then,
regardless of initial probability distribution on states, py, the system reaches, asymptot-
ically in time, a steady-state distribution, and the state sequence is asymptotically (as
time evolves) stationary. The same conditions ensure that any sample function of the
random state sequence, observed over sufficient time, exhibits the steady-state ensemble
average statistics. .

The steady-state solution is obtained by requiring the state probabilities at time &
and £ + 1 to be equai (the definition of steady state). This implies we must solve the

linear system
p=pA (2.5.43)

subject to the constraint that the elements of p sum to 1.
Example 2.23  Gilbert-Elliot Model for a Bursty Channel

Some binary channels have a tendency to exhibit bursts of transmission errors, wherein the
channel error probability is (/2 during burst ermror conditions and very small (10~ say)
during nominally good periods. (Such effects occur due to sporadic strong noise, loss of
synchronization in a receiver, signal fading, and the like.) A classical model for such
channels is the Gilbert-Elliot model [10] in which we assign the channel to be in one of
two states: 0 for “good” and | for “bad.” Through measurements, we might find that the
state transition probabilities are

apg = 0.99, ap, = 0.01,
(2.5.44)
a10=0.10, a)y = 0.90.
Thus, the system tends to persist in either state, but more so in the good state. The state
transition diagram is shown in Figure 2.5.9, from which it is clear that the state process
is recurrent. The steady-state probabilities of being in the good or bad state are given,
respectively, by
Py =0.99F; + 0.10P,,

(2.5.45a)
Py =090P, +001P,,
together with
Py+ Py =1. (2.5.45b)
Thg two equations in (2.5.45a) are dependent; either combined with (2.5.45b) yields Py =

10 1
7P =gy

Figure 2.5.9 Channel state diagram
for Gilben—Eliot bursty binary
channel.

Notice that we have determined only the state probabilities; the average probability
of channel error is something different and yet to be discussed.

Having modeled the state of a Markov system, we now wish to specify an action,
or output, of the system at each time by a production rule which is state dependent,
"The actions may correspond to the production of a source character in a digital message,

7Such Markov chains are said 1o be recurrent, or ergodic [4].
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the production of channel errors in the preceding example, or perhaps the generation of
channe] code symbols in a certain form of finite-state Markov encoder.

More specifically, we let the system produce one of B actions at time k and
designate this action as by € {0,1,..., B — 1}. The probability that a given action
occurs is conditional on the state g, and to completely define the model, we simply
specify P(hy = jlo, =i)forall j=0,1,...,B-landi=0,1,...,5—-1.

The combination of the Markov dynamics for the system state and the production
rule dependent on state imbues the action process with Markovian nature, as defined
by (2.5.38). It is possible for the output to correspond with the current (or next) state
with certainty, in which case we may as well label the states as the actions. However, our
present mode! is more general, allowing for example, a digital source to have two states
(perhaps alphanumeric data and English prose), but a much larger set of actions or outputs.

We can compute any joint probability of interest from this formulation simply by
finding the steady-state probabilities for system states and then using the conditional
probabilities for the various actions. As a special case, the marginal probability of the
system output b = j is

5—1
P(by=j)= ) Plox =i)P(bi=j oy =) (2.5.46)
i=0
Example 2.23 (continued)

Given the earlier specification, we have that the two actions of the channel are error by = 1)
and no error (b = 0). The conditional probabilities of these, given the two states of the
channel, are
P (error | good) = 1073, P (no error | good) =1 — 1073
(2.5.47)
Ferror | bad) = 0.5, P{no error | bad) = (.5

Substitution into (2.5.45) yields the average error probability for the channel as P (error) =
P(good)1073 + P (bad)0.5 = 0.04546. This is the long-term error probability, which would
be measured by counting errors, assuming that our modeling is accurate; it is important
to notice the fact, however, that the errors tend to cluster when designing the digital com-
munication system. Exercise 2.5.10 involves calculating the probability of two consecutive
errors; this is certainly not the square of the marginal error probability calculated previ-
ously, which would be correct if channel errors were independent. Effective error control
techniques would need to anticipate this error clustering phenomenon,

!

2.6 STATISTICAL DECISION THEORY

Demodulation and decodjng of noisy signals are a direct application of statistical decision
theory. In the more general setting, we are given a finite set of possible hypotheses about
an expeniment, along with observations related statistically to the various hypotheses, and
the theory provides rules for making best decisions {according to some performance cri-
terion) about which hypothesis is likely to be true, The general theory has applications in
many fields of social and physical sciences, including economic policy and the assessment
of drug efficacy on illness.

In digital communications, the hypotheses are the possible messages, and the ob-
servables are the outputs of a probabilistic channel. The schematic situation is depicted

76 Fundamentals of Probability and Information Theory Chap. 2



in Figure 2.6.1. Usually we will assume that the observables are continuous random
variables, or random vectors, and thus we express the influence of the channel through
probability density functions. Conversion to the discrete random variable case is done
in an obvious manner.

A
Message d | Decision Si
Generator| j-0,1,..., Maker
P;= P(S) M-1

Figure 2.6.1 Statistical decision theory setup.

2.6.1 Minimum Probability of Error Policies

Suppose we have M possible hypotheses {signals}, labeled by S;,i =0,1,..., M ~ 1,
associated with a probabilistic experiment. We also adopt prior probabilities on the
hypotheses, denoted P;. We assume the observable of the experiment is some collection
of n real values, denoted by the vector r = (r,, ra.....ry), and we presume we are given,
or can compute, conditional probability densities f(r | S;) or P(r ) S;), depending on
whether the observation is a continuous or discrete random vector. Based on r. the
decision maker produces a decision S‘i. We are interested in the best decision-making
algorithm in the sense of minimizing P (5‘,~ # S;), the probability of decision error.

As a side note, this problem may be generalized by weighing differently the costs of
various kinds of errors and then finding the policy that minimizes expected weighted cost,
In a radar detection setting, for example, we may wish to penalize errors of the missed-
target variety more heavily than false-alarm errors. However, in digital communications
it is customary to assign unit cost to all error conditions and zero cost 1o correct decisions,
whence the expected cost is the probability of decision error.

The observation vector r may be regarded as a point in some observation space,
perhaps R" or the space of binary n-tuples. Conceptually, it is helpful to view the de-
cision maker as partitioning the observation space into decision zones, as shown in Fig-
ure 2.6.2 for a case with three hypotheses. We label the decision zones Di,i=0,1,...,
M — 1, and agree that the decision is in favor of hypothesis §; if r € D;. Note that

Figure 2.6.2 Abstract partition of
observation space for M = 3.
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in general the individual decision regions are not requirea to be “connected” regions in
observation space (observe Dg in Figure 2.6.2), and it is even possible that no points
in the observation space will be assigned to a given hypothesis, tantamount to never
accepting that hypothesis. The task now is to define the partition boundaries optimally,
which in effect gives a rule for processing r to obtain the best decision S;. Fotlowing this
development, we will see how to implement the decision maker in certain common cases.

We are interested in minimizing P(.§i # 8;) = P(¢), where ¢ designates the error
event. First, let us consider the probability of error, conditioned on S; being the true
hypothesis. Then

P(c|S)=PreD|s5)
= { f(r|S)dr, (2.6.1)
D!

where D} denotes the complement of the ith decision region, and the integral is in-
terpreted as an n-dimensional integral, or #-fold summation in the case of discrete r.v.
observations.

The average probability of error is then

M-I
Pe)=) PiPE|S)
=0 (2.6.2)

M—1
=Y p f £(1 S dr.
i=0 o

We now state the optimal way to partition observation space.

Assign r to that D; for which P; f(r | §;) is maximum.

If ties occur in this assignment, an arbitrary choice ameong those decision regions that
are tied may be made.

Obviously, the decision maker need not formally compute decision boundaries and
then determine which cell D; the vector r falis into, but instead need compute only
Pif(r|8).i=0,1,..., M —1, and choose that index i with the largest result. Again,
in the case of ties, an arbitrary tie-breaking rule is permissible. Thus we claim that the
optimal decision rule is

Si = arg max P, f(r | S)). (2.6.3)

5

{We read “‘arg max” as the operator producing the argument that maximizes the function
indicated.) For discrete observations, we merely replace the p.d.f.’s in (2.6.3) with the
appropriate conditional probabilities.

The proof of this rule’s optimality, which we now provide for the two-hypothesis
case, is by contradiction. Suppose we adopt (2.6.3) as a decision procedure, which implies
some associated P(e) by (2.6.2). Now make an arbitrary change of the boundary, moving
a piece-A of observation space formerly in Dy, say, to D), as indicated in Figure 2.6.3.
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Figure 2.6.3 Perturbation
of decision boundary:
8¢ =f, Pof(r|So)—Pif(r|S)dr.

The new error probability is
P(e) = P(e) + 8P = P(¢) +f[P0f(r | S¢) — Py f(r | Spldr. (2.6.4)
A

Over the region A, the integrand is nonnegative; otherwise, A would not have formerly
been assigned to Dy, so the error probability associated with the new partition must be
at least as large as the original. Exercise 2.6.1 takes up the extension to the M-ary
case.

- Using Bayes’s rule in mixed form, we may write the posterior probability for the
hypothesis §;, given the observation r, as

Pf(r|S)
fn

However, the denominator oa the right-hand side in {2.6.5) doe$ not involve i, and max-
imizing (2.6.5) is equivalent to maximizing P; f(r | §;}. In fact, maximization over i
of any monotonic function of the product P; f(r | S} is optimal. [Keep in mind we are
not ultimately interested in the vaiue of P; f(r | S;), but only the index i that maximizes
the expression.} Often the proper choice of the monctonic function can simplify the
calculation considerably, as we will see shortly.

Because of its equivalence with maximizing (2.6.5), the rule stated in (2.6.3) is
known as a maximum a posteriori, or MAP, detector.

If the prior probabilities are equal, as is normajly assumed to be the case in digital
transmission (otherwise the message should be further coded), then the optimal policy
ts to maximize f(r | S;) over choices of message index i. This conditional density
function is called the likelikood of r, given §;, and in this case the detector is referred
to as maximum likelikood, or ML.

In summary, the rules are as follows:

PSi |1 = (2.6.5)

MAP: §, =argmax P, f(r|5$;)
5;

. (2.6.6)
ML : §; = arg max f(r [ §;)
SJ

Clearly, if the priors P; are equal, both procedures produce the same decision $;
for any specific r. For unequal P,, the two decision rules may produce different results,
but we are assured that if the prior probabilities are correctly known the MAP rule will
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have lower error probability. than the ML procedure If the priors are unknown, the usual
choice is to use the ML policy.

Before proceeding, it is appropriate to emphasize the universality of these decision
rules. Any digital communication decision task, whether involving a simple nonencoded
binary signaling problem or an elaborate error control coding technique, ultimately reverts
back to these procedures. The only steps in question are (1) how to formulate the
required conditional probability density functions and (2) how to efficiently locate the
makimizing §;.

2.6.2 nrelevant Data and Sufficient Statistics

In many everyday decisions we- are presented with data, or observations, that have no
bearing on our alternative choices. We could say such observations are irrelevant. Also,
there are situations where the raw data itself are not essential for optimal decisions, but
some reduced statistic, or function of the data, is adequate. A financial officer, in as-
sessing whether to risk a loan, is perhaps only interested in our bottom-line assets, not
how these are distributed among real estate, automobiles, savings account, and the like.
Similar cases occur in digital communications as well, and it is important 1o recognize
them, for much simpler processing can result.

Let r be an observation vector, related probabilistically to a choice of signals
through f(r | S;). We are interested in maximizing P; f(r | S;) over i. Suppose we
partition the observation inio two vectors a and b so that r is equivalent, within a
permutation, to (a. b). Then we wish to maximize

Pif(ablS)=PfblasS)f(als). (26.7)

It may happen, through judicious choice of the partition, that f(b | a, ;) is invariant to S, ,
in which case the middle term on the right-hand side in (2.6.7) is onty a multiplying factor
that scales equally for all hypotheses, and thus b may be safely disregarded as irrelevant.
Only a is essential to the decision process. It is sometimes easy to recognize irrelevant
data in a decision problem. If certain data are not irrelevant by inspection, simplification
of the optimal decision rules will often expose irrelevant data. Exercises 2.6.7 and 2.6.8
will help to clarify the concept.

A closely related and more profound idea is that of a sufficient statistic. Instead of
merely partitioning the observations as before, we can introduce a vector-valued function
(or statistic) g(r) of the data r and think of the observation as ¥ = (g(F).r . ra, .... 7).
(Certainly, we have not improved or diminished our decision-making atility by addmg d
completely determined relation on the original data to our observation vector. ) We again
wish to maximize

Pifr]Sy=Pf(ri.....r.|8).S)f(g(r)]S). (2.6.8)

Again, if, and only if, the middie term is invariant to ;. then (r\....,r,) as it stands may
be ignored, with only g(r) preserved for the decision. g(r) is then termed a sufficient
statistic for the problem. Ideally, g(r) will be a simple, perhaps scalar, function of the
data. Finding sufficient statistics is often done by intuition, or by direct formulation of
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the MAP/ML decision equations, simplifying where possible. If a sufficient statis_tic is
proposed, it may be tested by asking whether the second term on the right in (2.6.8) is
indeed constant with respect to i.

Example 2.24 Two Binary Signals in Independent Gaussian Noise

Let there be two equiprobable signals (hypotheses), formed as follows: to send Sy we
transmit (—1, —1, —1) and to send S; we transmit (1,1, 1). The units could be volis or
any other physical unit. We also assume both signals are equally likely to have been
transmitted. The observation r = (r, rz,r3) is the result of adding independent Gaus-
sian noise in each coordinate position of the signal, with the noise mean and variance
taken as O and 1, respectively. In block diagram form we have the channel shown in

Figure 2.64.
-1, -1, -1}
or A
Si; i=0or1 , Slgnﬂl ”: 1.1 :mr =(r1: h, r3:) Decision Sj
Generator Maker
n={(m, m m)
n;~ LJL(O, 1

Figure 2.6.4 Binary signaling and detection in independent Gaussian noise.

By independence of the noise, the variables r;, conditioned on either signal, are
independent, and the required conditional probability densities may be written as

3 3
1 —{r
fir{So) = I_[_f(r,- [ So) = l—[ FEe ¢+ D2

j=1 j=1

(2.6.9)
3

3
1
feiso=[]fe180= 1= e e~ =2
% 2

¥ o
j {

The assumption of equal prior probabilities implies that the ML test is optimal, and in the
binary case we may compare the two likelihoods and decide in favor of the larger. We
express this as
5
fe18) 7 f(r{Sop), (2.6.10)
So
where the symbols attached to the inequalities denote the decision produced by the given
inequality sense.
In this case we can further simplify (2.6.10) by taking logarithms of both sides.
(Again, we may apply any monotonic function to the decision statistic without altering
the decision, and the logarithm is such a function.) Doing so, we obtain the equivalent

rule
3 S 3
S =02 Y e+ 12 26.11)
i=l § J=1
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[Note the reversal of the inequality sense in {2.6.11).] By recognizing the two sides of the
comparison as squares of Euclidean distances, we can interpret the decision rule geometri-
cally as choose that signal closest in Euclidean distance o the observed r.

The decision is even simpler than (2.6.11) indicates, for upon expansion of the sums
and cancellation of common terms from both sides, we can reduce the test to

5,
T = Zr, ) (26.12)
FETRE

Equation (2.6.12) in effect tests 1o see on which side of the dividing plane r; +r2+r3 =0
the observation r lies. This is consistent with nearest-signal decoding obtained previousty.
The geometry of the problem and the dividing plane are indicated in Figure 2.6.5. This
plane clearly is the partition boundary abstractly indicated in Figure 2.6.2.

Decision Boundary
L R+ NR+ha=0

2

n

f3

Figure 2.6.5 Optimal decision boundary is plane bisecting line connecting
signals.

This example reveals that the data influence the decision only through the arithmetic
sum and is an example of a sufficient statistic, discussed previously. T = Z’f contains
the essential ingredients for the optimal decision; it is not important to maintain rq by itself,
for example. To formally confirm that the T is indeed a sufficient statistic, we could verify
that f(r(.ra,r3 | ri+ra+r3, §) is invariant to { by manipulating the p.d.f. using Bayes’s
rule.

Next, we compute the performance of this detector. The probability of error may be
expressed using the Jaw of total probability as

1 1
Ple) = EP{E | So) + 5!"(6 t§1). 2613

Because of the symmetry evident in Figure 2.6.4, P(c | Sg) = P(e | 51), so Ple) =
Ple | So)-

Conditioned on message Sy, T = er is (Gaussian with mean —3 and variance 3.
(Recall that in a sum of random variables, means are always additive, and the variances are
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additive here by independence.) Thus,
P(e | So) = P(T > 9] So)

0
1 2
= L (S P
_L (2?,3)1/28 dt {2.6.14)

20 l 1,2
- -y
- fam @R’ a.

where the last step follows by change of variables, y = (f + 3)/3'/2. We previously defined
the latter integral in terms of the Q(x) function, (2.2.12). Thus, by (2.6.13) and (2.6.14),
P(e) = Q((3)'7?) = 0.042 from a table of Q(x). _
it is heipful to think of the signals corresponding to So and S| as triplication of a
basic signal, —1 and +1, respectively. Using three such transmissions is superior to one
or two, and four, five, or more repetitions would lessen the error probability still further.
This is a demonstration of the ability to “average out” the additive noise, at the expense
of increased transmission time, fundamentally the law of large numbers at work. Prior to
“Shannon’s work, this kind of repetition coding was thought to be the only way to improve
the reliability. We now know much better ways to achieve high reliability without drastically
* sacrificing system throughput.

Example 2.25 Suboptimum Detectior; Applied to Example 2.24

Given the problem formulation of Example 2,24, it is tempting to think that the following
procedure is best: make a binary decision on r;,i = 1,2, 3, based on the sign of ,. This
produces a vector of £1 values, and the decision can be based on a majority vote.

The decision boundary in three-dimensional space corresponding to this procedure is
shown in Figure 2.6.6, which we note is vaguely similar to the optimal separating surface

A

-

Decision Boundary,
Majority Vote on
Hard Decisions

Figure 2.6.6 Separating surface defined by binary decision on each variable
with majority voting.
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of Figure 2.6.5. The error probability is, by virtue of symmetry,
P{€) = P(e | So)
= Pltwo er more.r; > 0| (-1, —1, —1)sent] (2.6.15)
=C3pi - p)+Cip,

where p is the probability a single coordinate is decided incorrectly. Since this is a Gaussian
noise setting, the coordinate error probability is

o0
| )
= — dr
P fo (2m)1/2 (2.6.16)

= (1) =0.1587

after a change of variables. Thus, upon substitution in (2.6.15), P(e) = 0.0675, which we
note is larger than obtained with the optimal decision policy. In essence, in performing
what we shall eventually call hard-decision decoding, the decoder has discarded important
likelihood information contained in the size of the observations.

It is apparent that some noise vectors cause hard-decision decoding to err, while ML
decoding succeeds. For example, selection of message (—1, —1, —1) combined with noise
vector & = (1.1, 1.2, ~0.1) produces r = (0.1, 0.2, —1.1), which is decoded correctly by
ML decoding but not by majority voting. Equivalently, the point r is on the proper side of
the ML decision surface, but on the wrong side of the majority-voting surface, We should
not conclude, however, that the ML decoder will never err when the suboptimum decoder is
correct; consider transmission of the same message with » = (0.1, 0.2, 2.0), which might be
said to include one especially bad noise sample. Here majority voting is correct, while the
ML test errs. We simply conclude that the probability of the former situation is greater than
that of the latter noise types, under the adopted model, and thus the superior performance
of the ML decoder on average.

Example 2.26 Photon Counting

Let’s revisit the optical PPM modulation technique introduced in Figure 1.1.2. There are
M = 8 message hypotheses in each signaling interval Ty, and the message is communicated
by transmitting optical energy in one of the 8 slots. Suppose the receiver is a direct detection
system, essentially counting optical-frequency photons in each slot. Thus, the observation
is the 8-vector of photon counts, (£, &2, ....kg).

We model the signal’s photon arrival process as a Poisson point process with mean
arrival rate Xs photons per unit time. The average energy per slot attached to such a signal
would be ff AT, since hf is the energy of a photon with frequency f, and A; T is the mean
number of signal photons per slot.'?

Because of background radiation, slots without signal can register photon counts.
Furthermore, due to the quantum effect, slots designated as signal bearing may produce zero
photon counts! We let the Poisson rate parameter be A, for such slots. In a signal-bearing
slot, the Poisson parameter will be A; + A,. In either case, the number of counts is a
Poisson random varigble with probability mass function

[(As + Ap)T e GstdndT

Py (k | signal) = k' \

k=0,1,..., (2.6.17a)

31 is Planck’s constant, 6.6 - 10~
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and

(An T )ke~k,,T
it '

Figure 2.6.7 illustrates these twa p.m.f.’s for a case with s, T =1,2T =3.

Py (k | no signal) = k=0,1,.... (2.6.17b)

0.368 0.368
PIK = k! P(K = k1 no signall
0.184
0.00307
0.061
’ 0.0153
| 1 I ! OW3/ | p 1
0 1 2 3 4 5 6 7 k
PIK = k| signal]
0.195 0.195

0.0733 0.104 0.0298 0.0132 0.0053
0.0183 | I {7

o 1 2

0.147 ‘ ‘ 0.156 0.0585
3 4

5 6 7 8 ¢
Figure 2.6.7 Probability mass functions for Poisson random variables of Ex-
ample 2.26.

Finally, we claim that counts in the various slots will be independent r.v.’s (this is
a basic property of the Poisson point process). This allows us to construct the conditional
p.d.f. for the observation, under each hypothesis, as

Pk, K,....ky (k1. k2, ... kg | signal in siot )

(s AT e BT 1 (nT)fre~M" (2.6.18)
= _ . 1 .
kit a kp!
The ML rule then reduces to, after simple algebraic manipulation,

k,

A A !
maximize | — t+ 4 (2.6.19)

i An

which in turn implies that the decision should be in favor of the slot with the largest photon
count. Thus, a sufficient statistic is the index of the stor with largest count; no other data
are necessary. If ties exist, we can break the tie in any reasonable way.

Visualizing decision regions in ohservation space is difficuit here due 1o the eighi-
dimensional space involved. However, the decision region for Dy is the set of all 8-tuples
for which k; is the largest, and so on. Observation vectors for which two or more stot
counts tie can be arbitrarily assigned to one of the competing choices.

To evaluate the error probability of this decision process, we can assurme that energy
was transmitted in the first slot. Then we would need to calculate the probability that any
count k2, k3, . - ., kg exceeds ki (or equals & to be pessimistic toward tie breaking).

It is easier instead to calculate the probability of correct decision. We can do this by
first conditioning on a specific value for k| and calculating the probability that ail the other
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counts are less than £;; we then weight these conditional error probabilities by P (K| = k)
and sum. Exercise 2.6.5 pursues this further.

A slightly different interpretation of the optimal decision rule is provided by the
calculation of likelthood ratios. We recall f(r{ §;) is the likelihood for signal S,, and
we define

L,—(r):M, i=1,2,....M-1 (2.6.20)
f(r1So0) o
to be the likelihood ratio, with respect to signal Sy, for the ith signal. Note L;(r) is a
scalar function of a vector random variable r, mapping observation space to the interval
[0, 00).

One way of implementing the optimal decision policy is shown in Figure 2.6.8.
We first compute the M — 1 likelihood ratios, forming the likelihood ratio vector L, =
(Ly, Ly, ..., Ly-1}), which can be viewed as a point in (M — 1)-dimensional space, called
likelihood ratio space. The likelihood ratio vector can be viewed as a random (M -— 1)-
dimensional vector obtained by a nonlinear transformation on the observation vector r.

L
- Lin) S
. Likelihood Ly —] Decision S
—_— Ratio M
aker
Computer —J— Lpt-+fr)

Figure 2.6.8 Likelihood ratio version of optimal processor.
The decision is based on L as follows:

1. Choose Sy if all cernponents of L are less than 1.
2. Otherwise, choose the index of the largest entry in L.

It should be clear that this procedure is equivalent to computing the likelihoods and
then ¢hoosing the index of the largest. Thus, equivalent decisions are made by properly
partitioning either observation space or likelihood ratio space. Stated another way, the
likelihood ratio vector L is always a sufficient statistic for the decision problem.

An appealing geometric aspect of the likelihood ratio perspective is that, whereas
decision boundaries in observation space are usually oddly shaped regions, the decision
regions in likelihood-ratio space are always defined by fuxed hyperplanes in (M — 1)-
dimensional space, regardless of the probability densities S(r } &) of the problem.
Figures 2.6.9a and 2.6.9b illustrate likelihood ratio spaces for M =3 and M = 4 cases,
along with the separating planes.

We could just as well work with the log-likelihoods, since the logarithm is a
monotone increasing function of its argument, and define

Z = {log, L (r), log, Ly(r}, ..., log, La_((r)] (2.6.21)
and decide as follows:

L. Choose Sy if all components of Z are negative.
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Figure 2.69a Decision regions in
L, likelihood ratio space, M = 3.

Lz
Plane l, = L;
R :
AN
f§\
0 < P
\ d
Y
Plane L; =1 —1*- L,

A

\ +— Plane L1 = La
N
¥

PN

Ly G\\k

Figure 2,6.9b View into D in likelihood ratio space for M = 4; region is
in positive orthant and bounded by three planes.

2. Or choose the index of the most positive entry in Z.

Obviously, Z is a sufficient statistic as well.

We conclude this section by developing a general bound on error probability for
a binary decision problem, linking the concepts of likelihood ratios and the Chernoff
bound developed in Section 2.4. For a two-hypothesis problem, we note that a sufficient

statistic is £001S)
F |9y
Z =1 —_— 2.6.22

and the test is simply to compare Z; with 0. Thus, the error probability, given that S,
was selected, is

Pe|S)=P(Z,>0]|8) < migE[e‘Z‘ | Sol (2.6.23)
>
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where the last step follows from a Chernoff bound. Substituting the definition of the
random variable Z,, we obtain

: Jr 80 )
P(e | S} <minE | ——— | § (2.6.24)
(€ 1 So) < mi [f(rlSo)lo
(We should interpret the expectation as being with respect to the random vector r, con-
ditioned upon selection of Sp.) Thus, the conditional error probability becomes, from the
definition of expectation,

. fa@ ST
P(GISU)S!:ng[m] f(r]Sp)dr

=min [ £ 1505w |51 ar.

A similar expression follows for the conditional error probability given S is selected for
transmission, except the conditional density functions are interchanged. Assuming the
two messages have equal prior probabilities, we then have that the unconditional error
probability is bounded by

(2.6.25)

Pe) < %Tig[ f FE1 S F(r ) $1) dr + f £ 1S F(r | So)* dr]. (2.6.26)

The minimization with respect to s can be performed in principle, once the two p.d.f.'s
are specified, but at least the bound is valid when we set s = % leaving the compact
expression

P(e) < ff(r [ So)'\ 2 f(r | S)'2 dr. (2.6.27)

This bound depends only on the form of the two density functions and does not require
formal description of the decision regions and the ability to perform integrals over com-
plicated decision zones. This type of performance bound will be encountered again in
Chapter 4 in our introduction 10 coded communications. . It is known that this bound
gives the tightest exponential form for error probability, if one exists, provided the opti-
mization with respect to s is accomplished. Exercise 2.6.10 treats this approach for the
two-signal problem introduced in Example 2.24.

2.7 CONCEPTS OF INFORMATION THEORY FOR DISCRETE ALPHABETS

In popular usage the term information is broadly understood but elusive to define. How-
ever, information has a precise meaning to a communication theorist, expressed solely
in terms of probabilities of source messages and actions of the channel. In this section
we develop the Shannon notion of information by introducing various entropy (or uncer-
tainty) measures associated with the communication process and then define information
exchange as a reduction in entropy. Following this, we demonstrate through source
and channel coding theorems that these measures are, in fact, important quantities for
communications purposes. Our initial treatment is confined to discrete-alphabet situa-
tions; extension to the case of continuous random variables and processes is made in
Section 2.9.
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2.7.1 Entropy for Discrete Random Variables

Consider a discrete scalar random variable X, which we might regard as an output of
a discrete message source. Suppose the variable X can assume one of K outcomes,
labeled x;.i = 0,1, ..., K - 1, with probabilities specified by Py (x;). As shorthand
notation, these will also be designated P;. We define the entropy of the random variable
X tobe

1
Py (x;)

=ZPilog71)_— =—EP,—log;’,‘.

The selection of H to denote entropy is now conventional and dates to Boltzmann's
work in the field of statistical thermodynamics. Before developing the properties of
this entropy function and in fact justifying its usefuiness, we observe that H(X) is
the expected value of the random variable log(1/P;), which some authors denote as
the self-information of the outcome x;. However, we shall reserve the meaning of
information to be distinctly tied to a reduction in entropy, rather than an intrinsic property
of messages.

Although by no means justifying entropy as important for the communications
process, we can argue that it is a proper measure of prior uncertainty of an experiment.
We begin by denoting H (X) = H(Py, P, ..., Px_1) to explicitly indicate the functional
dependence on probabilities Py, ..., Px_;. Now we stipulate some properties that an
uncertainty measure should possess.

K-1
H(X) =) Px(x;)log
=0 (2.7.1)

Propetty 1 Continuity
H(Pp\..., Px_y) should be continuous in all its variables; that is, small changes
in the probability model should have small effect on the uncertainty.

Property 2 Monotonicity
H(1/K,1/K, ..., 1/K) should be monotone increasing in X, meaning that, if the
outcomes are equiprobable, increasing their number should increase the uncertainty.

Property 3 Additivity for independent experiments

If the random variable X is bivariate, X = (Y, Z), with Y and Z independent, then
we desire that 5 (X) = H(Y)+H(Z). In words, the uncertainty of 2 joint experiment that
involves independent random variables should be the sum of the respective uncertainties
of the component experiments.

Property 4 Grouping

Suppose the outcomes x; are assigned to two disjoint events A and B as shown in
Figure 2.7.1, with probabilities Py =Py + P, +---+ P, and Pg = P,  + - + Px_,
. Tespectively. We desire that the overall uncertainty be representable in hierarchical
manner: there is a component of overall uncertainty due to the uncertainty of group
membership and one due to uncertainty remaining after group membership is identified.
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P{A) HPs,.... P

Figure 2.7.1 Interpretation of grouping axiom.

The first term is the uncertainty (entropy) of a binary experiment with probabilities P,
and Pg, while the second is just the total of probability-weighted uncertainties attached
to the groups, or subexperiments. Functionally, this requires

PO Pl
H(Py,.... Pk\) =H(Ps, Pp)+ PsH | —

P P,
, P" A (2.7.2)
PgH [ =L . "“)
+ Fp (PB Pa

The fact that the function in (2.7.1) satisfies these four properties is readily demon-
strated. The more interesting fact is that (2.7.1) is the only such functional of probabilities
(to within a scale factor associated with choice of logarithm base) that satisfies these four
desired properties. Proof of this uniqueness is provided in Shannon’s original work [11].

Regarding the logarithm base in (2.7.1), two choices are prevalent in information
theory: base 2, in which case the units of entropy are bits, and base ¢ where the units are
nats, for natural units. Because the practice of information theory occurs in a world of
binary machines, we shall assume base 2 logarithms throughout, unless otherwise stated.
Also regarding logarithms, we define 0 - log, 0 to be zero. Equivalently, we could omit
zero probability events from the definition of entropy.

Next, we develop a farther property of entropy:

0<H(X)<logKk. 2.1.3)

Equality on the left-hand side occurs when (and only when) one of the messages or
outcomes has probability 1 (note this is not equivalent to saying the sample space contains
only one outcome), in which case there is zero uncertainty according to the definition.
Equality on the right-hand side of (2.7.3) is obtained if and only if'® the outcomes are
equiprobable. The calculus of variations furnishes a direct way to demonstrate that the
equiprobable assignment attains an extremum; then we can verify the solution is in fact
a maximum. A proof that is less direct, but more useful in the entire development, is

19This will ofien be abbreviated as iff.
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based on the information theory inequality, so called because of its frequent appearance
in proofs of information-theoretic results.

Lemma (Information Theory Inequality). For z > 0, logz < (z ~ 1)/log, 2,
with equality iff z = 1.

Proof. 1t is simple to verify the equality condition and then that log z is a convex
N function of z for positive z by differentiation.?? Graphical interpretation of the lemma
is shown in Figure 2.7.2.

(z~1Mloge2 .”

Figure 2.7.2 [llustration of
informatiori theory lemma.

To prove H (X) < log K, with equality iff P; = 1/K, we shbw H(X)-logK <0,

1
H(X)~logK = Z Pilog 7 (Z P,-) log K. (2.7.4a)

We consider the sum to ori]y involve terms for which P; > 0, so that the previous lemma
may be applied, and obtain

1
H(X)—-logK = P; log ——
,Z gKPi

LR D

log, 2 (2.7.4b)
K-1
_(Z'i-x5 )
B log, 2

The proof also demonstrates that H (X) = log K iff P, = 1/K for all .

20A function f(y) of a scalar variable y is convex N if a f(y) + (1 — a)f(y2) < flay + (1 — a)ys)
for any yi, y; in the domain of the function and any 0 < @ < 1. Equivalently, provided it exists, the second
derivative of the function is less than or equal to zero.
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Example 2.27 Entropy Function for Binary and Ternary Sources

haim

0.47

In the case of a binary random variable taking on two values with probability p and | — p,
substitution into (2.7.1) yields '
H(X)= ~plogp — (I ~ p)log(l - p). (2.7.5)

This function will be subsequently referred to as the dinary entropy function and denoted
by ha(p). The binary entropy function is sketched in Figure 2.7.3a as a function of the

single parameter p.

» Figure 2.7.3a Binary entropy

H{py, p2, 1=~ g1, - D7)

0.1 0.5 09 1 £ function, i (p).

For ternary (K = 3) sources, the entropy is a function of two variables, since the
third probability is constrained by the first two. This is also illustrated in Figure 2.7.3b.
Note in each case the location of the maximizing probability assignment (that is, equiprob-
able), as well as the convexity of the surface over the region of probability assignments.
We shall not prove the convexity property; the interested reader is referred to Gallager's
text [12].

2~

1.5~

Figul'el 2.73b Ternary entropy function versus py, po. Maximum is at Pl =
pr=1x.
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2.7.2 Joint and Conditional Entropy

We now consider a bivariate discrete random variable (X, Y) having a specified jgint
distribution P(x;, y;),i = 0,1,..., K -1, =0,1,...,J — 1, from which mmglpal
and conditional probabilities may be derived. The joint entropy, H(X,Y) is, in keeping
with (2.7.1),

| .
HX.Y)=)Y ) P, y)log Fe—s. (2.7.6)
i "

Property 3 held that if X and Y are independent then the joint entropy is the sum of the
individual entropies. In general, however,

HX. Y)<HX)+ H({Y) (2.7

with equality only when X and ¥ are independent (see Exercise 2.7.1).

Next we consider the uncertainty (or entropy) associated with X, given that Y = y;
is specified. Again, using the carlier definition, we express this as a weighted sum of
logf1/P (x; |)’J = —log[P(x; |)’,-)]

K-1

HX Y =y) == P(x{y)logPlx; | y). (2.7.8)
i=0

which remains a function of the conditioning outcome y;. Then, to obtain the conditional
entropy H(X | Y), we average with respectto Y:

HX )= POPHX |Y =)
’ ‘ (2.7.9)
== Plxi.y)logP(x | y)).
i

This may be interpreted in the communication context by letting X be the input to a noisy
transmission channel and Y the output. Then H (X | Y) will be the uncertainty about the
input message after the channel output is observed, averaged over input selections and
channel actions. H(X | Y) is sometimes called the equivocation.

2.7.3 Mutual Information

Shannon defined information as follows: the (average) mutual information shared be-
tween random variables X and Y is

IX:Y)=HX)y-H(X |Y); (2.7.10)

that is, the information Y reveals about X is the prior uncertainty in X, less the posterior
uncertainty about X after Y is specified. From this definition we have

XYy = =3 T P(i)log Pi) + 303 Plx,. y))log P(x; | 3)
- i
=_ZZP(M—,yj)logP(x;)+ZZP(Xh.Vj)l03P(XJI.VJ') Q.7.11)
2 ~ < .
P(x; |
_ZZP(XI )’;)IOg[ P( .;f ]
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Using the definition of conditional probability, we can write (2.7.11) as

P(xi. y;
I Yy =3 3 Plx. y)log [mg%]' (2.7.12)
i i)Y

which explicitly indicates that /(X; ¥) = I (Y; X); the information function is symmet-
ric, and X gives the same information about ¥ as Y does about X! The symmetry is
also stated by

IX;Y)=H(X)-HX |Y)=HY)-H({ | X). (2.7.13)

Mutual information is nonnegative, being zero only when X and Y are independent.
(This is consistent with a heuristic notion of information: if one random experiment is
independent of another, knowing the outcome of either provides no information, or no
reduction in uncertainty, about the outcome of the other.) To demonstrate this formally,
we again appeal to the information inequality:

P(x;
~I(X:¥)= ZZ”"!‘*””‘*[FG%)E}
i J

PRI PO [~ 1] (2.7.14)
log, 2
Ll PeoPO) -, P Iy POy
B log, 2 -

[We have again considered the original double summation in (2.7.14) to be over those
(i, j) indexes for which P(x;, y;) > 0 so that the previous lemma may be applied.]
Equality occurs if, and only if, P{x;) = P(x; | y;) for all i, j such that P(y;) # 0,
which is to say if, and only if, X and Y are independent.

As a further consistency check, since information is nonnegative, (2 7.10) and the
result of (2.7.14) give that entropy is always at least as large as a conditional entropy,
50 conditioning typically reduces uncertainty; that is,

HX|Y)=HX. (2.7.15)

Example 2.28 Binary Symmetric Channel Revisited

Consider again the system of Example 2.3, shown in Figure 2.7.4 in schematic form. The
joint probabilities of the four outcomes are tabulated. We proceed to calculate H(X) and
1(X;7Y). First,

H(X) = —0.4log04 — 0.6log 0.6

= 0.97 bit/symbol,

which is virtually as large as the 1 bit/symbol entropy for the equiprobable binary random
variable. To find /(X Y), we could determine H(X | ¥) and subtract this from H (X),
or we can use the altemate form /(X;Y) = H(Y) — H(Y | X). Using the latter method,
we find that H(¥) = 0.982 bit, and from (2.7.8), H(Y | X) = 0.469 bit (note this is the
uncertainty about the output ¥, conditioned on either input value x;, by symmetry). Thus,
1{X:¥Y) = 0982 - 0.469 = 0.513 bit/channel usage. We also remark that if the input
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Figure 2.7.4 Channel models for Example 2.23.

selection was equiprobable the mutual information increases slightly to 0.53! bit/channel
usage. Assuming capacity relates to information-passing ability, it appears the channel here
is not capable of throughput anything near 1 bit per use, but roughly half that!

Notice from (2,7.12) that average mutual information is an expectation of a random
variable log(P(x;, y;)/P (x;) P(y;}), which is a function of the original random variable
outcomes. Thus, we could define this latter quantity as the random information I (x;; y;)
associated with specific outcomes, and indeed this is a possible starting definition for the
development we have just presented. In this context, if the output y; specifies the input
x; with probability 1; that is, P(x; | y;) = 1, then /(x;: y;} = I'(x;) and

1(x;)) = —log P(x)), (2.7.16)

which is called the self-information of the outcome x;. The entropy then can be defined
as the expected value of this random variable, again giving (2.7.1). This notion, how-
ever, fosters confusion of information with uncertainty—a proper interpretation is that
information is a reduction in uncertainty.

Whereas 7(X, Y) is nonnegative, the event information 1(x;; y;) can be negative.
In the previous example, / {(x = 0; y = 1) has a negative value, since the joint probability
of this event is smaller than the product of marginal probabilitics. We should simply
interpret such situations to be negatively informing, or misleading. On the whole, how-
ever, one experimeni or random variable is not misleading about another, although it
may provide, at worst, zero information.

2.7.4 Discrete Channels and Channel Capacity
The previous information relations have been developed in a general probabilistic setting.
To pursue communications applications, we introduce the notion of a discrete channel

having an input alphabet of size M and an output alphabet of size Q, both finite. Such
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Figure 2.7.5 Some discrete channels: (a) Binary symmetric channel (BSC);

(b) binary erasure channel (BEC); (c) M-ary uniform channel (MUC);
(d) M = 2, Q = 8 channel; (e) Z channel.

a channel is specified by its transition probabilities, P(y; | x;), typically depicted with
a line diagram of the form shown in Figure 2.7.5. There we show several simple but
prominent discrete chapnel models:

1. The binary symmetric channel {BSC) previously introduced in Example 2.3
2. The binary erasure channel (BEC)

3. The M-ary uniform channel (MUC)

4. A finely quantized channel with M =2, 0 =8

5. The Z-channel
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The BEC model arises in situations where “errors” are not made per se; instead,
channel dropouts or side information that a decision on a given symbol would be very
unreliable produces an erasure output. This is perfectly acceptable when the message is
a redundant sequence of symbols, since other transmissions can perhaps resolve the mes-
sage ambiguity. The MUC is simply the M-ary extension of the BSC, with the symbol
error probability P, distributed uniformly among M — 1 error possibilities. The M = 2,
{0 = 8 example illustrates that the channel output alphabet may be much larger than the
input alphabet, as in the case of a binary input, Gaussian noise channel that is finely quan-
tized in the demodulator. Finally, the Z-channel is asymmetric in its action on inputs, in
distinction to the other models. While channels such as this are of largely academic inter-
est, the Z-cnannel does surface as a model for optical communications (photon counting
with no background radiation) and for semiconductor memory error processes, in which
memory cell errors of type 0 — 1, say, predominate over the alternative error type.

Given a discrete channel model, imagine the transmission of one symbol. {We call
this a channel use.) The input is randomly selected according to a distribution designated
P (x;), and every such choice of distribution induces an average mutual information given
by an alternative form of (2.7.11):

(2.7.17)

P ’ y ]
I(X;Y)=§,§ P(Xi)P(}’jlx.')log[ Oy 1 x:) ]
i

T PPy 1 x)

Here we have written mutual information in a form so that the dependence on the channel.
P(y; | x;}, and on the input distribution, P(x;), is explicitly shown.

The most celebrated quantity of information theory is the channel capacity, C,
defined as the maximum mutual information over all input distributions:

C = T[a); /(X Y) bits/channel use. (2.7.18)

We emphasize that the number C is only a function of the channel description.
Determination of C requires a constrained maximization of a function 7 (X: Y) that
is convex N over the space of input probability vectors, [12]. Thus, standard numerical
optimization methods can determine C for arbitrary channels (see (13] for an iterative al-
gorithm that finds C and the maximizing distribution). In practice, however, we are most
frequently dealing with channels that are symmetric in the following sense: if we write the
transition probabilities in a M by Q matrix, we can partition the matrix, perhaps after re-
arranging columns, into submatrices such that within each submatrix all rows are permu-
tations of each other, and likewise for columns. This construction-for the BEC is shown in
Figure 2.7.6. By this definition all channels of Figure 2.7.5 except the Z-channel are sym-
metric. (Some outwardly symmetric channels are not, as shown in Exercise 2.7.7). For
such symmetric channels, we have the following results (see for example Gallager [12)):

1. The equiprobable input assignment, P(x;) = 1/M, achieves C, that is, produces
the largest mutual information.

2. The resulting capacity C is the mutual information between any specific input x;
which has p(x;) — 0 and the output r.v. Y.
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Figure 2.7.6 Reordering outputs to show BEC is symmetric.
Computation of C for the symmetric channels of Figure 2.7.5 is straightforward

using C = H({X) — H(X | Y) under the equiprobable input distribution. The re-
sults are

BSC: Cgsc =1+ €logle) + (1 — €)log(l — ¢) (2.7.19a)
= 1 — hz{¢) bits/channel use
BEC: Cggc = | — & bits/channel use (2.7.19b)
Py
. C = logM + P, log ——— 2.7.19¢
MUC MUC ogM + F;log M -1 ( )

+ (1~ P,)log(1 — P;) bits/channel use

The expression for the finely quantized channel involves all the transition probabilities
and cannot be put into compact form. For the asymmetric Z-channel, optimization of
the input probabilities must be performed to establish C. These issues are addressed in
the exercises.

2.7.5 Sequence Transmission

To this point we have assumed one-shot transmission, where a single input symbol
X produces a single output ¥. To model real digital communication systems that
send sequences, and to look ahead toward coded transmission, we consider now the
sending of an N-tuple X = (X, X3,..., Xy), which produces a channel response
Y = (Y1.Y;,....Yy). We assume feedback from output to input is not allowed to
influence the selection of future inputs. As before, inputs X,,z = 1,..., N, are chosen
from an alphabet of size M and outputs Y, are in a Q-ary set. We make the further strong
assumption that the channel acts on each input in independent fashion and refer to such
a channel as memoryless. ‘While certainly not always valid (intersymbol interference
and fading are two causes of channel memory), the memoryless assumption serves our
immediate need of developing the necessary concepts related to channel capacity. The
memoryless assumption means that

N
Pyl =[]P0:tx). (2.7.20)
t=1
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We have from the definition of mutual information that

ASARY
IX:v) =) Y P y)log[ g(y) ]
x ¥

[ N
=ZZP(x.y) logH Py lxr)—logP(y)] (2.7.21)
x ¥

t=1
=Y Y Py
Xy

(The outer sums indexed By x or y are understood as N-fold sums.) The first term in
the final form of (2.7.21) can be interpreted as an expected value of a sum of random
variables, which is the sum of expected values, that is, ) H(Y; | X,). The second term
on the other hand is, upon summing out the x variable, the unconditional entropy H (Y).
We have shown, however, that this entropy is less than or equal to the sum of entropies
for each symbol, with equality if symbols are independent. Thus, we have that

N
Y log P(y, | x,)] -~ 2 Pxylog P(y)]
= ¥

=1 X

r

N
I Y) < Y H(Y) - HXY, [ X))

=1

N (2.7.22)
=) 1(X;Y),
i=1

with overall equality iff the ¥; variables are independent. The latter is true if and only
if the inputs X, are independent, given the memoryless channél model. Furthermore,
each information term in (2.7.22) is upper bounded by channel capacity C, by definition.
Thus, we have the inequality string

1(X;Y) < ZI(X,; Y,) < NC. (27.23)
f

In other words, the average mutual information shared by N -tuples over a discrete mem-
oryless channel is no larger than the sum of the average (scalar) mutual informations,
with equality when the input sequence is independent. This sum, in turn, is at most NC,
where C is the maximum mutual information achievable in a single use of the channel. To
have end-to-end equality in (2.7.23), we must choose the components of X independently
according to a distribution that achieves capacity for the one-shot problem; that is,

N
PO =[] P (27.24)
=1

where P (x) achieves capacity in the sense of (2.7.18).

If maximizing mutual information between sequences is our goal, we find that for a
memoryless channel there is no benefit in using dependent channel inputs, and in general
this implies a penaity because the input entropy is diminished by such dependencies.

Another important relation for mutual information is associated with a cascade of
channels (Figure 2.7.7). The boxes or channels may be visualized as processors that are
part of the communication equipment, as well as the physical channel. We wish to show
that the end-to-end average mutual information /(X; Z) can be no larger than either of
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