2

Fundamentals of Probability
and Information Theory

The study of modem digital transmission practice is in many ways a study of the theory
of probability and statistical inference. Messages to be sent through a system, as well
as the actions of the channel upon these messages, are regarded as outcomes from some
grand underlying experiment with a certain probability structure. Indeed the concept of
information to a communication theorist is fundamentally linked to probability—loosely
speaking, we regard information transfer as having occurred when our prior uncertainty
associated with selection of a message is reduced. '

We begin then by reviewing the basic concepts of probability and information
theory. Our coverage is intended as a survey of those probability and information-
theoretic ideas essential to the rest of the book and is by no means comprehensive.
Readers wishing to delve further into the theory of probability will find solid treatments
with an engineering orientation in the texts by Papoulis [1], Larson and Shubert [2], Gray
and Davisson [3], and Leon-Garcia [4]. Texts that are more expansive on information
theory are those of Gallager, McEliece, Blahut, Viterbi and Omura, and Cover and
Thomas cited at the end of Chapter 1. Sections 2.1, 2.2, and 2.5 summarize standard

material in probability and random processes and can be skipped for those with prior
background in this material.
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2.1 PROBABILITY

Probability theory is a body of mathematics, derived from an axiomatic basis, that seeks
to describe apparently random, or uncertain, phenomena. We should realize that proba-
bility descriptions are models of the environment we seek to describe; these models are
derived from prior experience or careful reasoning about the problem. Whether these
models provide a sufficient description of real behavior is something that always should
be questioned.

The elementary concepts of probability may be conveyed through die-rolling or
balls-in-umns problems, but we shall develop a more formal understanding that suffices
to handle all problems of typical engineering interest.

We first speak of an experiment that has results that seem, at least at our level of
understanding or observation, to be random. Every experiment has a sample space, 2,
which is the set of all possible outcomes from an experiment.! The sample space may
be a finite set, countably infinite (i.e., one-to-one indexable by the positive integers),
or noncountably infinite. Possible sample spaces could be the set {head, tail); the set
of real numbers; the set of all finite-energy waveforms x(¢), ~00 < t < o0; or the
set of binary sequences of length 23. Elementary outcomes or members of the sample
space are dendted by w, and we indicate this by w € 2. Events, A,, are formed as
subsets of €, which we denote A; € Q. For example, the singleton set {head] and
the set of rational numbers are subsets of the first two of the previous sample spaces.
We note that the sample space is a subset of itself, an event called the sure event, and
the empty set, or null set, @, is another subset of €2, sometimes called the impossible
event.

The union of events A and B, written A U B, is the set of outcomes w such that
@ € Aorw e B, or both. Likewise, the intersection of events, written A N B, is the
set of outcomes {w : w € A and w € B). We say A and B are disjoint if they have no
points in common or, equivalently if AN B = @. Finally, we denote the complement of
an event A, that is, the set of points in €2, but not in A, by A°.

For mathematical consistency, probability statements are made only about certain
events that together form a field. A field or algebra F of events is a collection of events
Ay, Az ..., A, such that, for every event A; and A; contained in the field F,

and
Aj € F. (2.1.2)

Thus, a field is a collection of sets closed under the set operations of union and comple-
mentation. Every field £ will therefore include, since AU A= Q and AN A° = @, the
sure event Q and the null set ¢,

In many cases of importance, we need to deal with infinite collections of events,
for which we require that (2.1.1) extend to countable unions; that is, for 2 countable set

ISets will be denoted either by enumeration, for example, {red, blue, yellow, green), formally by listing
the set property, for example, {x : x a positive ineger}, or in longhand form, for example, the set of rational
numbers,
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ofevents A, Aa, ... contained in F
oC
[ JaieF. (2.1.1a)
i=\

If the family of events F satisfies this stronger requirement, in addition to (2.1.2), it is
commonly called a sigma field or sigma algebra.

A primary example of a sigma field is the situation where the sample space € is
the real-line R!, with the field F formed by the collection of open intervais (a, &), their
complements, and countable unions of these. This field includes every event of possible
interest, including sets with single elements, the set of rational numbers, and so on. (This
field with an infinite number of constituent events is called a Borel field.)

We should note that the construction of the field F is partly determined by the
ultimate interests of the probability analyst. For example, if the only question of interest
in a real-line experiment (Q = R') is the probability of the event A = {w : w > 0},
then we could make this event be in our field F, along with the event consisting of the
negative numbers, the entire real-line event €2, and the empty set, #. This collection of
four events is clearly a valid field and is much smaller than the Borel field (which also
includes the event in question).

Having described the sample space and a collection of subsets defined on the
sample space, we assign to every A; € F a probability, or set measure, F(A;), such that
three basic axioms are satisfied:

P(A) =0, (2.1.3)
P(A,'UAJ‘)= P(A,)-FP(A_,) when A,‘ﬂf‘j =@ (2.1.9)

Furthermore, in the countably infinite case, we require that

provided the events are pairwise disjoint. These axioms simply require that probability
measures be positive, normalized, additive (or countably additive) set measures.

Any probability measure satisfying these axioms is mathematically valid, and its
choice then completes the probability system (S, F, P) that describes the experiment.
Figure 2.1.1 summarizes the elements of such a system. Of course, for probability theory
to be a useful and relevant theory, probability assignments must reflect physical laws,
previously observed behavior, or good judgment about an experiment. There is also
usually some flexibility in specifying a probability system for a given experiment. We
naturally should seek the most tractable description.

Two examples will serve to illustrate probability systems. The first has a finite
sample space and the second possesses an infinite sample space.

Example 2.1 Binary Sequences

Let 2 be the set of binary 4-tuples, that is, Q = {0000, 0001, ..., 1111}. The sample space
contains 16 elementary events. The set of all subsets (there are 2'S = 65,536 of them,
including the null set @) is a field F closed under union and complementation, and the
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PlA) P(A)
Sample Space Field Probability
{A Collection of Measure
Subsets of Q Satisfying
Satisfying (2.1.3), (2.1.4), (2.1.5)

(2.1.1), (2.1.2)
Figure 2.1.1 Components of a probability System (2, F, P).

probability assignment to events in F could be
1
PlA) = E(num_ber of elementary outcomes in A;). (2.1.6}

Thus if A; is the event described by “first three places are ,"-or {0000, 0001}, P(A;) = %
We don’t need to make this probability assignment to have (2.1.3), (2.1.4), and (2.1.5)
hold, but the assignment, given that all elementary outcomes are equally likely, represents
a typical model.

Example 2.2 Receiver Noise

Let the experiment involve the specification of a noise voltage at one instant in a communi-
cation receiver. We take the sample space {2 to be the interval [—5, 5]. As the field of events,
we might adopt the Borel field F consisting of all open intervals of Q, their complements,
and finite or countable unions of these. We might choose 1o assign probability to intervals to
be proportional to the interval length. This constitutes a uniform probability assignment on
the interval [~5, 5], again not a necessary assumption. The constant of proportionality must
ensure that P(Q) = |. Therefore, to an interval (a, b) we assign probability (b — 4)/10.
Note in particular that the probability of the event {@ = 0}, or any other singleion point, is
zero in this system. This begins to illustrate the need for care in dealing with experiments
with an infinity of outcomes. In fact, there are infinite sets in F, for example, the set of
rational numbers in §2, that have zero probability.

We might ask whether the “family of all subsets of Q" is a useful field. This
class of events meets the requirements of a field, by definition, and its adoption thereby
would avoid the need for care in specifying the field F. However, in cases where
the sample space is infinite, in particular the real-line situation, there are some events
in this superfield that are unable to be “measured” or assigned probability consistent
with the axioms (2.1.3) through (2.1.5a). This is a topic for 2 course in mathematical
analysis.

Now we consider the union of events A and B, not necessarily disjoint events.
Note that, by (2.1.1), AU B € F; hence it is proper to assign to this event a probability,
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which is
P(AUB)=P(A)+ P(B)—-P(ANB), 2.1.7
which may be easily shown by application of elementary set operations and the axioms

of probability (see Exercise 2.1.1).
Since probability is a nonnegative measure, we then have from (2.1.7) that

P(AUB) < P(A)+ P(B), (2.1.83)

with equality if A and B are disjoint or, more generally, if A N B is an event of zero
probability. This is a special case of a more general result, which will be used repeatedly
in this book, the union bound:

P (U Ai) < }: P(A), (2.1.9)

with equality if the events are disjoint. This bound follows by mathematical induction
on (2.1.8).

2.1.1 Conditional Probability

The conditional probability of an event A, given the occurrence of the event B, is
defined as

P(ANB)
—r B (2.1.10)

provided the denominator is nonzero. [If it is zero, the conditional probability in question
is formally undefined, but it is perhaps better to say that P(A | B) can be arbitrarily
chosen as any number in {0, 1]. In this way an equivalent form of (2.1.10)

P(ANB)= P(A| B)P(B) (2.1.1H

P(A|B) =

can be thought of as always holding, even when P(B) = 0.]

We should emphasize that conditional probabilities are measures on (conditioned)
events and as such must satisfy the axioms stated earlier. For example, if conditioned
on the event C, the events A and B are disjoint; then we insist that P(4 U B | C) =
P(AICY+ P(B|O). : |

Since P(ANB)=P(BNA) = FP(B|A)P(A), we have the rule, sometimes
known as Bayes’s rule:

P(B | AP(A)
PA|B)= ——— 7 2.1.12
| B) P(B) ¢ )
This proves to be a useful computational tool in probability calculations.

From repeated application of (2.1.11) we can derive the chain rule for probabil-
ities:

P(AINA;..NAY=P(A | A2... A)P(A1] As... A)

e P(An—i.' An)P(An)-

(2.113)
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Figure 2.1.2 Venn diagram illustration of law of total probability. F(8) =
Pi{A\.B)+ P(Az, B) + B(A3, B) + P(A4, B).

Also, if events Ay, Az, ..., A, form a partition of B, that is, B = U, A;, but A; NA; =
@ for all i # j (see Figure 2.1.2), then the law of total probability expresses P(B) as

m m

P(B)= P(BNA)=) P(BI|A)P(A). (2.1.14)
j=1 j=1

This rule allows us to find the probability of an event by analyzing disjoint constiwuent

events and also allows Bayes’s rule to be rewritten as

P(A; | B) = P81 A)P(A) (2.1.15)

2. P(B1A)P(A)
i=1

Example 2.3 Noisy Channel with Binary Input, Binary Qutput

A simple communication situation will illustrate these relations.” Let a binary channel have
a single input and single output, both in the set {0, 1}). We proceed to define the sample
space as the set of inputfoutput paiss, Q = ({0,0), (0. D). (L.O), (1, 1}}. We designate the
events (subsets) corresponding to, respectively, sending 0 and | as

Ar={0.0), (0, 1} and A= {(1,0), (1, D}.

Similarly, we designate the events of receiving ( and | as B| and B>. Suppose the condi-
tional probabilities P(B, | A1) and P(B; | A>) are both defined to be 0.9, while the “error”
probabilities are P(B> | A;) = P(B| | A} = 0.1. Also, let us assume that the input prob-
abilities are P(A) = 0.4 and P(A7) = 0.6. This model is summarized in Figure 2.1.3.

By the law of total probability, the probability that the output is 0 is

P{B;) = P{A1)P(B| | A1)+ P(A2)P(B | Az) =042,

and application of (2.1.12) gives that the a posteriori probability
0.9)(0.4)

P(input = t=0)= P(A] | B]) = ———— = 0.857.
(input = 0 | output = 0) = P(A, | By) 00 57

2+A posteciori” and “a priori” are Latin for “after the fact,” and “before the fact.” respectively.
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Given, however, that the output is 0, the a posteriori probability of a 1 input is
(0.1){0.6)
0.42

This serves to illustrate that conditioning can either raise or lower probabilities relative to
the unconditioned, or a priori values. This example also introduces the ubiquitous binary
symmetric channel, which we shall frequently encounter throughout the book.

P(A2 | B)) = = 0.143.

Binary Symmetric Channel

A =0 B,=0
A =1 T B,=1
____________________ —
PlA) =0.4 P{ByA,) = P(ByA;) = 0.9 Figure 2.1.3 Probability model for
P(B//Az) = P(Bj/A;) = 0.1 Example 2.3.

2.1.2 Independence

Independence is one of the most fundamental concepts in all probability. Two events A
and B are independent if and only if

P(ANB) = P(A)P(B), (2.1.16)
which in conditional probability terms, by (2.1.10), means that
P(ANB)
P(A = ————— = P(A). 2.1.17
(A1 B) P(B) (A) (2 )

In words, the conditioning upon B does nothing to aiter the probability of the occurrence
of A, if A and B are independent, which is certainly a reasonable interpretation of the
independence of two events. Notice that the event A; (“input is 0) is not independent
of the event B; (“output is (") in Example 2.3; only for useless channels will it be the
case that all input and output events are independent.

For multiple events A, A3,..., A,, we say the events are jointly-independent if
for every choice of subsets of these events, say A;, Aj,...,An

P(A,-ﬂAj... NAg) = P(A,)P(AJ.) .. P(AnR). (2.1.18)

Joint independence naturally implies pairwise independence of the considered events, but
the converse is not true in general. (Exercises 2.1.2 and 2.1.3 treat simple counterexam-
ples.)

2.2 RANDOM VARIABLES: DISCRETE AND CONTINUOUS

In communication theory, we are normally interested in probabilistic experiments for
which the outcomes are numerical, for example, the index number of a message or the
voltage associated with a noise signal. Additionally, we will encounter the transformation
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of random numerical data in the processing of signals. We now proceed to build on the
previous theory to develop the calculus for handling such cases.

A scalar random variable X is formally defined as a mapping from a sample space
2 to the real line; that is, t0 every w in £, we associate an image X (w) on the real
line. Thus, 2 is the domain of the function X, and the real line, or a subset of he real
line, is the range of the function.’ Figure 2.2.1 illustrales this abstraction. Provided this
mapping is well behaved (mathematicians would say measurable), events in the sample
space 2 define events on the real line, where the natural field of events is the Borel field
cited earlier. Such an event is that consisting of all w €  such that X(w) < % In
other words, a random variable defined on a probability space defines a new probability
system. Usually, in applications we suppress the explicit functional relation and work
Jirectly with probability descriptions on the real line. Regarding notation, uppercase
letters, for example, X, will denote random variables, while lowercase characters, for
example, x, will indicate specific values of the random variable. (Incidentally, do not be
misled by the term random variable; the functional relation is not random, but only the
value of the function is.)

Xlo)  Xlap) Xlws)

Figure 2.2.1 Abstract notion of a scalar random variable: a mapping from Q
to R.

, If the random variable, which we shall often abbreviate as r.v., takes on a finite,
or perhaps a countably infinite, number of values, x;, we say X is a discrete r.v. Ex-
amples are the binary random variable taking on values (¢ or 1 and the random variable
corresponding to the number of transmissions (1, 2, ...) before the next error. On the
other hand, when the values of X form an interval, or several disjoint intervals, we call
X a continuous r.v. An example is the random phase angle © attached to a transmitted
sinusoidal signal; normaily, we would say this angle is a real number 0 < ® < 2.
Occasionally, we encounter mixed random variables, where X exhibits attributes of both
discrete and continuous r.v.’s.

2.2.1 Discrete Random Variables

A scalar discrete r.v. X is specified by its possible values x;,i = 1,2,..., and by its
probability mass function:

Px(xi}=PX =x;),i=1,2,... _ (22.1a)

More general range spaces are possible, but will not be employed here.
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where by P(X = x;) we formally understand the probability of the event in the field F
whose included outcomes w satisfy X (w) = x;, that is,

Px (X,') = P(a) : X(w) = x,-). (22“))

The axioms of probability imply that Py (x;) >0 and Y, Py(x;) = 1.
Equivalently, we can describe a discrete r.v. by its cumulative distribution func-
tion (c.df):

Fx(x)=Px(X <x)= Y Pxl) =3 Pxlxdux—x),  (222)

iy <x i

where u(x} is the unit step function. From the definition (2.2.2), we see that Fx(x)
i1s a nondecreasing function of x, with jump discontinuities at those x; having nonzero
probability. Also, from the definition, Fy(—~00) =0 and Fx(oc) = 1.

We have earlier indicated we may just skip the functional understanding and work
with distribution functions on the real line. This is all mathematically acceptable be-
cause we can show that, given any nonnegative, real-valued function g(x) defined
on the real numbers xy,x3,..., which sums to 1, we can always set up a probabil-
ity system (€2, F, P) on which a random variable can be defined such that Py (x;) =
g(xi).

Example 2.4 Binary R.V.’s and Related Distributions

Certainly, one of the most relevant examples for digital communications is the binary r.v,
X taking on values x; = 0 and x; = 1 with probability p and 1 — p, respectively, where
0 < p < 1. [In the formalism of random variables, for a coin-flipping experiment with
£ = {head, tail} we might assign X (head) = 1 and X(tail) = O with P(head) = 1 —
p1 The probability mass function and distribution function for the r.v. X are shown in

Figure 2.2.2a.
i
Pyx) ':
P
0 1 X
]
Fx(x, L ®
P 1-p
S e————
p
. i Figure 2.2.2a Probability mass
— —  function and distribution function for a
0 1 X binary random variable.
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A related distribution is the binomial distribution, giving the probability for the num-
ber of 0's (or tails in coin tossing) appearing in # independent trials* of a binary experiment.
On the binary symmetric channel, the binomial distribution foretells the probability of hav-
ing k errors in n uses of the channel if p is the error probability. Letting X be the random
variable representing the number of 0's, we have

Pxtk)=CPp*(1 — py"t, k=0.1.2....,n, (2.2.3)

where C/ = n!/k!(n—k)! is the binomial coefficient. Figure 2.2.2b illustrates the probability
mass function for the binomial r.v. with 2 = 10 and p == 0.25.

0'3l_ 0.282
i 0.250

0.2 |-0.188
Pxlk} - 0.746

011

0.053
0.056 | 0.016
p 9008

¢ v 2 3 4 5 6 7 8 9 W0 &
Figure 2.2.2b Binomial probability mass function when n = 10, p = 0.25.

As a check on the validity of the probability mass function (2.2.3), we nole that
summability to 1 follows from the binomial formula:

n
Y o -p =0 -pi=1. (2.2.4)
j=0
Still another related random variable has the geometric distribution, relating waiting-
time probabilities in independent binary trials. In coin tossing, this relates the number of
tosses & until the next head appears, while on the BSC, we have the distribution for the
random time until the next error. For the next error to occur exactly & trials later, we
must have & — 1 coirect transgissions followed by an error outcome. These events are
independent, so we find the probability that the waiting time is & units is

Pxty=p-p* ' k=12, {2.2.5)

where again 0 < p < 1. Here summability 1o 1 follows from the expression for the sum of
a geormetric progression.

2.2.2 Continuous Random Variables

For the continuous random variable case the distribution function F x(x) defined as
in (2.2.2) is, by definition, continuous and nondecreasing in x. If Fy(x) is differen-
tiable at all x, fx(x) = dFx(x)/dx is the probability density function, or p.d.t., for

4Often called Bernoulli trials,
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the random variable X. We shall take derivatives in the right-hand-limit sense when it
matters to define the value of fx(xp), as in Example 2.5.

From the nondecreasing and end-point properties of distribution functions, it fol-
lows that a probability density function satisfies

Sfx(x)y =20 (2.2.6a)
and

[ Sx(x) dx = Fx(o0) = Fy(—o0) = 1. (2.2.6b)
-0

Any function fx(x) defined on the real number line satisfying (2.2.6) constitutes the
p.d.f. for a valid random variable.

It should be emphasized that probability density functions yield probability quan-
tities only when integrated over intervals; that is,

b
Pla< X <b)=Fx(b)— Fx(a)= f fx(x)dx. 2.2.7)
a
A differential calculus interpretation is that fx(x)dx is the probability that the random

variable X lies in the interval (x, x + dx).

Exsmple 2.5 Uniform Random Variable

If X is equally likely to lic anywhere in the interval [a, b), we say X is uniformly distributed
on [a, b], writing for shorthand X ~ Ula, b]. The cumuiative distribution and probability
density functions are, respectively,

0, x<bh,
Fyry={ X ;". a<x<b, (2.2.8)
I, x> b,
and
: a<x<b
fx(x)y = ! b-a’ - 2.2.9)
0, otherwise.

Both functions are shown in Figure 2.2.3.

Example 2.6 Gaussian Random Variable

The preeminent continuous random variable in probability and statistics literature, as well as
in communication theory, is the Gaussian random variable, named after K. F. Gauss, who
called its distribution “nomal.” jts central impornance to probability theory is rooted in
limit theorems, which, under mild restrictions, hold that sums of random variables converge
in distribution to the Gaussian form as the number of summed variables becomes large.
(This will be studied in Section 2.4.) This behavior makes the Gaussian distribution plau-
sible as a model for electronic noise in communication systems, since most electrical noise
processes are due to the aggregate effect of huge numbers of charge carriers undergoing

5Gauss argued that this distribution was the typical onc emerging in measurements involving many etror
sources.
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Fxix) |

a x
filx)
" 1 )
") b-a Figure 2.2.3 Cumulative distribution
| i function and probability density
function for a uniform random
a b x X
variable.

random motion. It is also true that the Gaussian assumption, when invoked in systemns anal-
ysis, allows much easier mathematics, and this promotes a bit of overuse of the Gaussian
modei!

The Gaussian p.d.f. is given by

e—(x—u¥ /20
(2maH12 °

where the two parameters x4 and o specify the random variable. This Gaussian p.d.f. is
depicted in Figure 2.2.4a. Notice that u determines the location of the p.d.f., while o
controls the width. We use the notation X ~ N{u, o%) to connote that X has p.d.f. given
by (22.10).

fx(x) = —00 < X < 00 (2.2.10)

fx(X)

e k=061k

Figure 2.2.4a Gaussian probability density function.

If fx(x) is a Gaussian p.d.f. as in (2.2.10), with » = 0 and o2 = 1, then

x o0 1 g
Fﬁx):[oofx{z)dzzl—[ GO 2dz. (2.2.11)

The latter integral is not expressible in terms of elementary functions, but is widely
tabulated and available in many computer subroutine libraries. In this text, we adopt the
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so-called Q-function notation o refer to such integrals and define

Q(x) = [ (2;)' 7 e ?' 7 dz. (2.2.12)

Thus, (x) is simply the tail integral of the standard (4 = 0,0 = 1) Gauassian density
function (see Figure 2.2.4b). Note aiso that @(—x) = [ — @{x), s0 we only need to

evaluate Q(x) for x > 0. Also, it is obvious from the area interpretation of the integral
that Q(0) = { and Q(o0) = 0.

fx(X)

Figure 2.2.4b Standard Gaussian
(b} p.d.f. and definition of G(x}.

When we are interested in probability quantities for a general Gaussian random’
variable, as in (2.2.10), a simple change of variables shows that

P(X <x) = Fy(x) =1 _Q(x;‘“'). (2.2.13)

In Table 2.1, a short table of the function Q(x) is provided; more exhaustive tabulations
are found in any standard mathematical handbook.

TABLE 2.1 GAUSSIAN TAIL INTEGRAL, Q(x), AND
UPPER BOUNDS

o212 e~x2/2
x Q(x)
@n)* 2
0.0 a.5 — 5.00 x 10~}

0.5 308 x 107! 621 x 107! 3.89 x 107}
1.0 1.5 % 10~ 2.42 x 10~! 3.03 x 10!
1.5 6.68 x 1072 863 x 1072 1.62x 107}
20 228%x 1072 270x 1072 677 x 102
25 6.21 x 1073 7.01 x 1073 220 x 102
30 1.35x 1073 148 x 1073 555 x 10~3
35 230x107* 250 x 1074 1.09 x 1073
a0 317x 1075 335 x 1075 1,70 x 104

123 1x 107!
2.34 1 x 1072
3.10 1 x 1073
3.72 1% 1074
427 1x 103
477 I x 1076
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CAUTION

Other forms similar to (J(x) abound in the literature, notably the complementary error
function, ) o
erfc(x) = -—l——f e " dz. (2.2.14a)
al? f

By a simple change of variables we have that

1 x

O@x) = —erfc—. (2.2.14b)
22

Special care should be used in reference to tables of the Gaussian integral, as well as in

comparing expressions found here, such as probability of error, with other texts. Both

definitions are widely used.

Because of the frequent need to evaluate the Q(x) function or to manipulate Q(x)
to obtain analytical bounds on a problem, several approximations to Q(x) are now
presented, all of which become tight as the argument x increases.

We first apply integration by parts to the definition of Q(x):

20 1 " o= f2
= Tl = —d:
Q(x) /‘. TSI z [ @

J N (2.2.15a)
= -—n—-—-(zjr)mx —f ———(2n)'/2z2 dz, x>0.
Since the second integral is positive, we obtain
e~V 12
Q(x) < G x>0 (2.2.15b)

The upper bound becomes tlighter as the argument x increases.

Next, to establish a lower bound. we note that the last integral in (2.2.15a) we just
observed to be positive is upper bounded by
© g7 /2 X ge=i /2 1 [ ze752 e~ /2
—_—d —_—dr < — dz = . 2.16
jx a2z 0 f Benr T3 ] a2 ¥ = Ganye @210

Using (2.2.16) in (2.2.15a) gives the lower bound:

1 —xip
Q) > (1 - r—) a%m x> 0. (2.2.17)

The upper and lower bounds of (2.2.15b) and (2.2.17) are in agreement to within 10%
for argument x greater than 3, but neither are close approximations to Q(x) for small x.

Sometimes more analytically convenient, and in fact a better upper bound than
(2.2.15b) for small x, is [3, p. 123]

1.
Q) < ie"‘ 2, x>0. (2.2.18)
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The upper bounds, (2.2.15b) and (2.2.18), are also tabulated in Table 2.1, giving an
indication of their accuracy. Another very accurate approximation amenable to machine
evaluation is presented in Exercise 2.2.3.

Example 2.7 Rician-Rayleigh Random Variables
Another example of special importance in communication engineering is the random variable
that arises in the envelope, or nencoherent, detection of noisy signals and as a modet for cer-
tain fading processes. The Rayleigh® random variable has a single parameter p.d.f. given by

i ‘12/201 > 0
fx(x) = [ aze ’ =24 (2.2.19a)
0, x <0,
and the ¢.d.f. is obtained by integration to be
—v2/9a2
Fy(ry= | 1=¢* 7" xz0, (2.2.19b)
0, x < 0.

As we shall find shortly, the Rayleigh r.v. arises as the root-sum square of independent
Gaussian variables; that is, X = (X 12 +X %)m, where X| and X; are independent Gaussian
random variables having common parameters u =0 and o2,
If we change the formulation slightly to allow one of these variables, say X, to have
1 # 0, but define the problein otherwise as before, then X is Rician distributed,’ with p.d.f.
given by
x X 29,2
fro = = 1o (5‘—5) e~ WA 5 g (2.2.20)
a o

where {o{2) is the modified Bessel function of zero order. Since fo(z) = I at z = O, it is
obvious that (2.2.20) reduces to (2.2.192) when @ = 0, as it should from the definition of
the Rician variable. Thus, the Rayleigh random variable is a special case (u = 0) of the
Rician random variable. Figure 2.2.5a shows the Rayleigh p.d.f. and the Rician p.d.f. for a
case where 4/5 = 3. When pt/o becomes large, it can be appreciated that the Rician p.d.f.
approaches the Gaussian form, with parameters u and o. Figure 2.2.5b depicts the joint
p.d.f. for independent Rayleigh and Rician variates.

filx)
10 |

- Rayleigh (g - o)

05 Rician( ¥ = 3)

xfe

Figure 2252 Rayleigh and Rician probability density functions.

SAfter Lord Rayleigh, who worked on clectromagnetic scattering problems, among many others.

"Named for 5. O. Rice, one of the foremost contributors to the mathematical description of noise
processes,
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Figure 2.2.5b Joint p.d.f. for independent Rician and Rayleigh r.v.'x.

Discrete and continuous random variables have thus far been specitied using sepa-
rate notation. We can unify the description of discrete and continuous r.v."s by invoking
the Dirac impulse, or delta, function, é(x), to handle derivatives of discontinuous distri-
bution functions. Thereby, we can define a p.d.f. for discrete random variables totally
comprised of impulse components.

The Dirac impulse is best defined through its sifting integral property:

o . . . O. X < Iy, 5

.[_oo f(8(z~zg)dr = 7o, R (22.21)
implying that the function 8(x) has zero width and unit area. To apply this notation,
consider a mixed continuous/discrete r.v. having the distribution function shown in Fig-
ure 2.2.6. Note there is nonzero probability that the variable X takes on values —1 and
1. The p.d.f. for this r.v. is also indicated, with impulse contributions having strength (or
area) equaling the size of the discontinuity in the distribution function. With this exten-
sion, we may describe virtually any random variable by its probability density function,
realizing it may contain impulse terms.

2.2.3 Mullidimensional Random Variables or Random
Vectors

Frequently, we need to describe situations where the outcomes are collections of real
variables, for example, X, X, X;. This may arise in either of two cases: (1) single
performance of an experiment that produces multiple outputs or (2) repeated trials of
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Fx(a\’)

fi{x) = dFyix)/dx

Area=b-a Area=d-c

X

Figure 2.2.6 Distribution and density function for random variables of mixed
type.

an experiment that produces a single output. We denote a real n-dimeasional ran-
dom vector by X = (X, Xa,...,X,)® and by Fx, x, . x,(X1.%2,...,%,) its multi-
dimensional joint distribution function. The value of Fy, x, . x. (x1,X2,...,X,) is the
probability of the joint event “X; < x; and X; < x»... and X,, < x,.” This distri-
bution function is everywhere nonnegative and is nondecreasing in each of its n argu-
ments. These interpretations and properties are direct generalizations of the scalar r.v.
case,

The n-dimensional joint probability denmsity function is written fy, x, . x,
6 ST Xn), and is a nonnegative function of n dimensions that has n-dimensional vol-
ume of 1. The n-dimensional p.d.f. is related to the distribution function through partial
derivatives:

a"[FX,,...,X, (X], IZ, R xn)]

oxy...dx,

fx,_m‘x.(xl,...,x,,) = , (2222)
provided these partial derivatives exist. Figure 2.2.7a depicts a possible two-dimensional,
or bivariate, p.d.f.

Especially in the multi-dimensional case, it is obvious that the notation becomes
cumbersome, and we shall often omit subscripts denoting the random variable’s name in
density functions and distribution functions when the argument can be used to unambigu-
ously convey the variable name. For example, we will frequently write f(x) to mean
fx(x)or f(x,y) to mean fxy(x,y), but we cannot write f(x — y) since its meaning is
ambiguous: for what random variable is x — y an ocutcome?

¥Vectors will be denoted by boldface lype to distinguish these from scalars.
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Example 2.8 Three-dimensional Density Function
We consider the case n = 3 and define the random variables to have joint density function

foxxx) = Gos eI, (2.2.23)

This p.d.f. has surfaces of constant probability density that are spheres in three-dimensional
space, and the function can be visualized as a cloud having spherical symretry about the ori-
gin, with the cloud density decreasing exponentially with the square of the distance from the
origin. This density could be integrated over various regions of three-space to obtain proba-
bilities that the three-dimensional random vectar would lie in a certain volumne. In particular,
the integral over all space is | (as it must be). Other calculations are treated in Exercise 2.2.4.

If n-dimensional probability descriptions are given either in the form of distribution
or density functions, we can obtain reduced or marginal descriptions by eliminating
unneeded variables. For example, the distribution function for X, can be obtained from
a bivariate distribution function for X,, X, by

Fx,(x1) = P(X1 2 x1) = P(X) £x1,X; <00)

(2.2.24)
= Fx, x,(x1, 00}
The marginal p.d.f. for X, is obtained by
o0
fX,(»\l) :f fx,,xl(xl,.’t’z)dxg_. (2.2.2%)

The term marginal is properly suggestive; we are either evaluating c.d.f.’s on the “mar-
gin” of the plot (2.2.24) or are projecting p.d.f’s onto the margin by a process of integra-
tion (2.2.25). It may be simply verified by integration that, in Example 2.8, all first-order
densities are of the Gaussian form (2.2.10) with 4 =0 and o = 1.

2.24 Conditional Distibutions and Densities

Conditional distributions and densities are defined in keeping with the definition for
conditional probability of events, with appropriate definitions of events in terms of ran-
dom variables. Let X < x be an'event and Y < y be another. Then the conditional
distribution function for X . given Y< y, is

PX=x Y <y) Fxr(x,y)

P¥ <yl Fy(y)
_ Fxy(x, y)
Fyy(oo,y)

This should be interpreted as a function of x, for any fixed y. As for any cumulative
distribution function, Fyy<,(x) must be nondecreasing in x, for any y, and must have
limiting values of O and 1 as x - —0o0 and x - oo, respectively,

For any fixed y, we could differentiate with respect to x, obtaining a certain form
of conditional density function:

Fxiyey(x) =
(2.2.26)

dFx )y <y(x)

fxwg(x): i

(22.27)
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On the other hand, suppose the conditioning on ¥ isthat y < ¥ < y+dy. The
distribution function for X, given that Y lies in this intervai, is, from the preceding

' arguments
P(X<x.y<Y <y+46y

Py <Y <y+3dy)

FXIy<Y5y+5y(x) =

(2.2.28)
_ FXYU;)"*'S.V) - FXY(-\’,.)')
T RO+ -Fr(»)
In terms of density functions, (2.2.28) could be expressed as
X y+3y
- Jxr(u, v)dudv
Fxjy<r <ytay(x) = / wfy . (2.2.29)

I v
Differentiating (2.2.29) with respect to x using Leibniz’s rule, we obtain the conditional
density function for X, given that Y lies in a small interval (y, y + 8y):
fyym SarGvdde  fyy (x, y)dy
fyyM" fr(v)dv frindy

assuming the density functions involved are approximately constant over the interval. In
the limit as 3y — 0, we then have that the conditional density function for the random
variable X, given Y = y, is

(2.2.30)

fX|y<P’5y+6y(I) =

Jar (x5} 2.2.31)
fr(y)

provided that fy(y) # 0. Rather than write the cumbersome expression fxir=y(x), it is

conventional to write instead

leY:_v(x) =

fKY(x,y)
fryn

but we should remember that this is a density function only for a fixed y. As y is varied,
we obtain a family of conditional p.d.f.'s for the random variable X, and for any fixed
¥. fxyr(x | y) must be nonnegative and integrate to 1. As earlier remarked, we shall
sometimes omit the explicit naming of the random variables so that (2.2.32) could be
denoted simply as f(x | y).

A graphical interpretation of a conditional density fx,r (x | y) is depicted in Fig-
ure 2.2.7a. Consider the curve formed by the intersection of the joint density surface
and the plane y = yo. This function of x is clearly nonnegative and gives the correct
shape as a function of x for the conditional density fy ir (x | yo), but must be scaled by
the marginal density at yp, as shown in (2,2.32), to provide the integral constraint on
the conditional density function. Figure 2.2.7b shows this conditional p.df.. as well as
another conditioned by y = y;.

Manipulation of conditional density functions is often aided by using the density
function version of (2.1.12), that is, if fy(y) #0,

Jrix(y 1 ) fx(x)

fr(»

although we should be careful to interpret this not as a ratic of probabilities, but of
probability densities.

faptx b y) = , (2.2.32)

fxyrxy) = , (2.2.33)
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Figure 2.2.7a Bivariate density function.
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/

Figure 2.2.7b Conditional probability density functions for joint p.d.f. of
Figure 2.2.7a.

X

2.2.5 Independence of Random Variables

We have already encountered the concept of independence of events. Realizing that
the distribution function for n random variables is a probability of a joint event X, <

Xp, ..., Xn < Xn, we can immediately define independence of n random variables as
follows: X, X, ..., X, are independent if and only if
F(xy,xa, .., x0) = F)F(x2) --- F(xy) (2.2.34)
for all choices of arguments x;, x5, ..., x,. That is, the joint distribution function must
factor into product form. Note that (2.2.34) implies that
Flxpxg, oo x)=F(x,xa,... X1, X, = 00)
= F(x)F(x) -+ F(xpo1)Flx, = 00) (2.2.35)

= F(X|)F(-x;3) te F(xrr—l)-

so, unlike the case in (2.1.17), we do not need to specify further that (2.2.34) holds for
all subsets of arguments. Thus, independence of n random variables implies any pair (or
other subset) of these are independent; the converse statement is, however, not true (see
Exercise 2.2.3).
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The corresponding statement for the joint density function of n independent vari-
ables is that X, ..., X, are independent if and only if

fxix, .o x) = fF)fx) - flxn) (2.2.36)

for all choices of x|, x3, ..., x,. Clearly, the three-dimensional density function mn: Ex-
ample 2.8 has this property, so in that case X, X,, and X, are independent.

In the case that two random variables X and X, are independent, by (2.2.32)
and (2.2.36) we have that

fxyx, (e | x2) = fx, (xi1), , (2.2.37)
again meaning that conditioning upon X; = x; does not influence the density function
for X, and vice versa.

Example 2.9 Computation with Rayleigh and Rician Random Variables

To provide a result useful later in our study, as well as to provide facility with computation
involving probability density functions, we compute the probability that, in Example 2.7,
the value of the Rayleigh random variable exceeds the value of the Rician random variabie.
assuming these are independent. We let Ro denote the Rayleigh variate with p.d.f. given
in (2.2.19) and R denote the Rician variate with p.d.f. given by (2.2.21). To find the desired
probabtlity, we must integrate the joint p.d.f. over the region defined by the evem, that is,
ro = r1. Thus, using independence, the two p.d.f.’s, and integration, we obtain

oc oc
P{Rg > R1)=j [ f(ro.ry)drgdr
0 r

= f Fr) [[ flro) dro] dr
] )
oe o rO 2 2

=/ fr) [f — e~/ dro] dry
0 n o=

oo
ri 1 —triagl 2 el
- [ () v i
g

(2.2.38)

By combining exponents, removing e~H /4 from the integrand. and changing variables,
we are left with

I e [y ny *(Yz*%)ﬂ"z
P(Ry>Ry)y=-e"H f4a” -'—zlo (—ﬁ)e dy
2 p of T\ (2.2.39)
] 2 2
— g M /Ao
3¢ .

since the integrand is the Rician density function (2.2.20), albeit with a parameter u’ =
#/+/2. 1t is remarkabie that the rather formidable looking integral in (2.2.38) reduces to
such a compact resui.

2.2.6 Tiansformations of Random Variables

Frequently, in communication systems analysis we encounter the transformation of ran-
dom variable(s) X,. ..., X,,, producing new random variables Y, . . ., Y. Dependent on
the nature of the functional transformation and the nature of the input random variables,
the new random variables may be discrete, continuous, or mixed random variables.
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The most general case is provided by a vector-valued function of a vector
Y = g(X), (2.2.40)

which represents a mapping from R" to R™. We shall concem ourselves, however, with
the case of a scalar output variable ¥ = g(X). Some transformations of this form are

Y = Qnt(X), (2.2.41a)

where Qnt(X) designates a quantizing, or discretizing. operation on the input random
variable. Quantizing is further described shortly. Other routine transformations are

) Y =(X| " (2.241b)

and

Y =3 x (2.2.410)
j= [

A general procedure® for describing ¥ is to find its distribution function Fy (¥) ar
density function fy () by direct appeal 1o the definition of these functions. That is, we
determine

Frivi=PY < y)=P(X:g(x) <y). (2.2.42)

The latter can be computed as a multidimensional integral involving the n-dimensional
joint p.d.f. of the random vector X. We shall illustrate such analyses with two examples.
The first, a quantizer, produces a discrete output random variable, while the second
example yields a continuous random variable from a continuous function defined on a
continuous random variable.

Example 2.10 Uniform Scalar Quantizing

Quantizers appear commonly in digital communication systems as the interface between
continuous, or analog, signals {observations) and digital processors. As we discussed in
Chapler 1, quantizers are also a frequent first step in the digital transmission pathway,
forming a discrete information source from an analog source. _

A typical uniform scalar quantizer operates as follows. N = 2° output levels (volt-
ages) are assigned as possible output approximations of the input signal X. These can
then be uniquely identified by a »-bit message. The output levels are designated y; =
A+ 0+ %)A,i =01,...,¥ — 1, where A is a constant and A is the step size of
the quantizer. Thresholds, n;, are placed on the input interval at evenly spaced values:
i =—A+iA,i=12 ...,N -2 The outer thresholds Mo and py are normally taken to
be +oc, allowing the quantizer to in principle accept arbitrarily large signal magnitudes.
The mapping Qnt(X) is such that output y; is produced if Ni £ x < 4. The input/output
characteristic is shown in Figure 2.2 8a.

Consider the problem of quantizing a Gaussian random variable with i = 0 and
o =1 and optimizing the step size of the quantizer for a given number of bits, b 1o achieve
a best approximation. The result depends on the criterion of optimality, but a common
choice, and one that is readily solved, is to use the minimum-mean-square-error criterion.
That is. we choose A so that the probability weighted squared error,

e = f S0 [ = Qnex))?] dx (2.2.43)
-

?See [1], Chapter 6, for other methods of handling transformations.
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Figure 2.2.8a Uniform quantizer inpul/output characteristic.

is minimized. (This is the second moment of the quantizing error, as discussed in Sec-
tion 2.3.) Max [6] performed this calculation for varying numbers of levels N (he also per-
formed the optimization when the uniform interval requirement is removed).!® For N = 8
(or b = 3), the optimal step size is A = 0.586. This gives the thresholds shown in Fig-
ure 2.2.8b along the input axis. The probabilities of the eight output values y; are given by
integrals of the Gaussian p.d.f. over the appropriate interval:

P =y) = Q@i+1) - Q(mi), i=01,....7, (2.2.44)
where ((x) is again the Gaussian tail integral defined in (2.2.12).

1
a

i
4 ! . i L .
-1.758-1.172-0586 0 0.586 1.172 1.758
M N2 3 un MNs Tie LT

Figure 2.2.8b Quantizer spacings for N = 8 levels, Gaussian source, mean-
square-erTor criterion.
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Example 2.11 Development of Rayleigh Random Variable from Transformation

Let X and X7 be independent, Gaussian r.v.'s having u = 0 and identical parameters o2
Define

r=(x2+x3)'"", rzo (2.2.45)

**Uniform quantizers are easier to implement than nonuniform quantizers. The latter effect can be obtained
with nonlinear mappings ahead of the quantizer and after the inverse quantizer.
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to be a continuous random variable formed by these two vanables. To find the distribution
function for ¥, we have

Frin =P <y)=Px: (2 +2)72 < y). (2.2.46)

The latter probability is obtained by integrating the joint probability density function for X,
and X over a disc centered at the origin, with radius y. Thus,

]
Fr(y = / f zmze‘“f*‘f)ﬂ“’ dx) dx;. (2.2.47)

(+xp? <y

(The joint density function in the integrand is the product of marginal densities here.) By a
rectangular-to-polar coordinate change, this becomes

2 -p /20’
iy = [ / peZJ'ra dpdf

\ (2.2.48)
¥ pp—ptf20? ,
=f ﬁhz— dp=1-¢ Y7 y=z0.
0 o
The density function then follows from differentiation:
frin=Ze 7y, (2.2.49)
o

which is the earlier defined p.d.f. for the Rayleigh r.v. (2.2.19a). Thus, the root- -sum-square
value of two independent Gaussian variables with 1 = 0 and equal o is Rayleigh distributed.
Equation (2.2.45) provides a recipe then for generating Rayleigh random variables for sim-
ulation purposes, given the ability to construct Gaussian random variables. Altcmanvely
this development leads to the Box-Muller method for producing two Gaussian r.v.’s from
two uniform r.v.’s, as described in Exercise 2.2.7.

Proceeding further, we could ask for the distribution of Z = ¥2 = X f + X %:

Fzi)=P(Z<2)=P(Y2 <) =P < ')
o 2 (2.2.50)
=f LYo dy=1—¢ 72 z>0.
0 a
It follows from differentiation that
f1@) = e, 7>, 2.2.51)

which is the p.d.f. for the o:u-sxded exponential random variable.

This result is a special case of a more general result, which we shall merely state (see
Papoulis [1}). Let

Z=X2+ X244 x? (2.2.52)

where X; are independent, p = 0, Gaussian random variables. Then Z is said 1o be a
chi-squared random variable with n degrees of freedom, lis p.d.f. is

1
27267 (nf2)

where I'(x) is the gamma function, evaluated by

f2(z) = DR (2.2.53)

F(x) =(x —1)!, x an integer (2.2.543)
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or

r (x + _;.) _ ! 33 “2;(2)( - l)ﬁ, x an integer. (2.2.54b)

As we have aiready stated, the Rician r.v. is obtained by

Y = [+ X2+ X2]'", (2.2.55)

where o is a constant and Xy, X, are Gaussian independent vanables with ¢ = 0 and
common parameter o. Equivalently, we could simply define one of the variables to have
centering parameter «. The p.d.f. was expressed in (2.2.20) and can be obtained using
similar methods, but eventual appeal to special functions, that is, fo(x), is necessary.

The sum of squares of n independent, identically distributed Rician r.v.’s, Z =
Y2+ ..+ Y}, has a noncentral chi-squared distribution with 2n degrees of freedom,
whose p.d.f. is given by [1]

1 szN\&=-D2 o 2%
fz(z) = 53 (;5) PR L (;T) z >0, (2.2.56)

where s’ = na?/2 is the noncentrality parameter of the distribution, and I, (x) is the
modified Bessel function of order ». In particular, the p.d.f. for the square of a single
Rician variable is noncentral chi-squared with two degrees of freedom:

1 iz
fr) = 5ze 0+ Io(si 2 ) ' 2.2.57)

2.3 EXPECTATIONS AND MOMENTS

Expectations, or expected values, are simply probabilistic averages of random variables
(or functions of vanables) in an experiment. We begin with the case of a single random
variable, after which generalization to the multivariate case is simple.

Let g(X) be a function of a random variable X with a specified probability density
function or probability mass function. Thus, Y = g(X) is another r.v., which may be
either discrete or continuous depending on the nature of the random variable X and the
function g(X). The expected value of Y, written E[Y], is defined as

>0

E[Y] = E[g(X)] = / g() fx(x)dx. (2.3.1a)

—0o0

In the case of discrete r.v.’s, we replace the integral with a summation:

E[Y] =) g(x)Pxix). (2.3.1b)

The relation in (2.3.1) is sometimes called the fundamental theorem of expectation, but we
take it as a definition. In words, the expected value is simply the probability-weighted
average of values of g(X), and the notation £[ ] is merely shorthand for an integral
operator.
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2.3.1 First and Second Moments

Important special cases of this general definition are obtained when g(X) = X, the
identity function, and when g(X) = X2. In the former case

E{X] =f Xfx(x)dx

oc

or (2.3.2)
E[X] =) xPxl(x)

is called the first moment of X or, more commonly, the mean of X or the expected value
of X. For shorthand, the expected value of X will be represented by X or occasionally
by m when the random variable name is clear. .

To recall an analogy in mechanics, if we let fy(x) be the mass per unit length of
a thin rod, then X is the center of mass. Clearly, if the density function, or probability
mass function, is symmetric about some value xg, then X = xg, provided the integral or
sum in (2.3.2) exists. This allows us to say by inspection that (@ + b)/2 is the mean of
the uniform r.v. in Example 2.5, while p is the mean of the Gaussian random variable
defined in Example 2.6.

When g(X) = X2, we have

E(X?) = fxzfx {x) dx, (2.3.3)

which is called the second moment, or mean-square value of X.!' Often this is denoted
by X2. (To pursue the mechanical analogy, X2 is the moment of inertia of the rod about
the point x = 0.) |

A related moment is the variance, or second central moment:

Var[X] = E[(X — %)) = [ G —m)? fy(x) dx. (23.4)

(In the physical analogy, Var[X] is just the moment of inertia about the center of mass).
Direct expansion and integration in (2.3.4) gives

Var[X) = X2 —m? — m? + m?
_ (2.3.5)
= X2 —mz.

Thus, the variance of a random variable is equivalent to its second moment minus the
square of the first moment.

The standard deviation of a random variable X is defined as the positive square
root of the variance and is a common measure of scatter or dispersion. The standard
deviation of the random variable in Example 2.5 is (b —a)/12'72, while fof the Gaussian
random variable of Exampie 2.6, the standard deviation is o. These can be verified by
carrying out the integration in (2.3.4).

1'We will formulate expressions for the continuous r.v. case; the discrete case has an obvious analogous
expression.
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To extend the definition of expectation to the multidimensional case, we let ¥ =
g(X) be a scalar-valued function of an n-dimensional random vector X. We define the
expected value of ¥ to be

E[Y] =f / £(x) f(x)dx, (2.3.6)
—00 —co

where we interpret the integral to require an n-dimensional integration.

We now develop one important operational rule for the expectation operator. Con-
sider the sum of » random variables, ¥ = X| + X, + .-+ + X,. The expected value of
Yis

E[}’]=E[X|+---+X,,]=f(x;+xg+---+x,,)f(x)dx

=fx;f(x)dX+ ---+fx,,f(x)dx 237

= E[X:}+ E[X2) + - + E[X,).

The last step follows from the definition of expectation (2.3.6), or we may first find the
appropriate marginal densities for each variable in turn and then use (2.3.2). Therefore,
no matter what the nature of the joint density of the # r.v.’s, we have that the expectation
of the sum is the sum of the expected values.

2.3.2 Correlation and Covariance

An expectation of great importance in the study of random processes and certainly in
communications and signal processing is the correlation between two random variables
X and X3, defined as the expectation of their product:

Corr(X;, X2) = E[X | X,] = ff x1x2 f(xy, x2)dxy dxs. (2.3.8)

Even more useful is the covariance between X, and X 2:
‘Cov(Xy, X2) = E[(X) — m)(X2 — m2))
= E[X 1 X3) —mymy — mymy +mm, (2.3.9)
= Corr(X1, X2) — mym;,

where we have defined m; as the mean of random variable X i. Note that Cov(X, X) =
Var(X) and that Cov(X, X;) = Cov(X3. X;).

It follows from (2.3.8) that if X, X, are independent, then their correlation is
the product of their means, mm,, giving a covariance of zero in (2.3.9). When the
covariance is zero, the variables are said to be uncorrelated. (A more apt and less
confusing term would be uncovarianced.)

Now let’s rewrn to the sum of n independent variables, ¥ = 3" X; and consider
the variance of Y. For simplicity, let us assume E [Xi] =0 for all {, and thus E[Y] = 0.
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The variance of Y is then

Var[¥] = E[Y?]| = E [Z X; Z":Xf]
j=1

=1

= izn:E{X;X,-] = iE [xi]= ivmx,-].
i=1 i=1

i=1 j=1

(2.3.10)

We have invoked the result just developed that E£{X,X;] = E[X,]E[X;].i # . for
independent variables, as well as the zero-mean assumption. Therefore, the variance of
the sum of independeni random variables is obtained by summing the variances of each
variable in the sum. This result holds even when the summed variables have nonzero
mean.

Independent random variables are uncorrelated, but the converse is not in general
true (see Exercise 2.3.3 for a counterexample). An important case where the converse
does hoid is the case of jointly Gaussian r.v.’s, as we now discuss.

Example 2.12  Jointly Gaussian Random Variables

Random variables X, X>,.... X, are joimtly Gaussian (or jointly normal) if the
n-dimensional density function is of the form

] —(x—m)K~'(x—m)"

VX2, i K} = —————— X , 2310
where x is the row vector representation of the n-tuple, m = (m,.ma,....m,) is the
vector of means, x! denotes the vector transpose, and K is the #n x n covariance matrix,
defined as

K:[K,—,—]z[E{(X,—-m,-](XJ—mj)]]. Q3.2

The exponent in (2.3.11) is a quadratic form, which implies that surfaces of constant prob-
ability density are n-dimensional ellipsoids. In the particular case of two variables, the
joint p.d.f. can be expressed in terms of five parameters: two means, two variances, and a
correlation coefficient

_ElX = m (X7 — m3)]
p= o0

_ Covi(X;, X3)

- ooy

23.13)

The correlation coefficient is defined in like manner for non-Gaussian variables and may
be shown to lie in the interval [—1, []. Figure 2.3.1 depicts leve! contours, or contours of
constant p.d.f. in the bivariate Gaussian case for several values of p.

Retuming to the n-dimensional case, we can see that if the random variables are
pair-wise uncorvelated, then K is a diagonal matrix, with entries orf y.... a2, and thé density
function becomes

1 o,
FxL - xn) En_—“;'m"(_" m) 202
i=1 (no?) (23.14)

= flx1)f(x2) -~ flan),
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Figure 2.3.1 Level contours of

bivariate Gaussian p.d.f.’s. All have
{c)p=-07 my=m;=0, oy = 3.

()

X4

proving independence. To emphasize the point, uncorrelated Gaussian random variables are
independent. :

Additional analytical convenience pertains 1o Gaussian r.v.’s. First, marginal den-
sities of Gaussian random varisbles are also of Gaussian form, and conditional p.d.f.’s
for one of the Gaussian variables, conditioned upon knowledge of another, are also of
Gaussian form. Furthermore, if we let Y = (¥|,Y2,...,Y,) be obtained by any lin-
ear transformation of X, that is, Y = AX + b, where A is a real invertible # x n ma-
trix and b is a real 1 x # vector, then Y is still jointly Gaussian, albeit with a new
mean vector and new covariance matrix. This is easily demonstrated by solving for x
in terms of y and then substituting into (2.3.12) and observing the quadratic form ex-
ponent. (See also Exercise 2.3.4.) Thus, analysis of Gaussian variables undergoing
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linear transformation requires only consideration of the mean vector and covariance
matrix.

As an extension of the correlation of two random variables, consider the ran-
dom variable Z defined by the product of n variables, Z = X X,...X,. lts expecta-
tion is

E[Z] = E[X,Xa--- X,) = f---fxl.rg--'x,.f(x)dx, 2.3.15)

which cannot in general be further simplified. However, if the variables are independent,
then we may factor the n-dimensional p.d.f. and obtain

E[X1---an=jx|f(x|)dx| v--fx,.f(x..)dxn

= E[X\]- - E[X,].

Thus, provided independence holds, the expected value of a product of random variables
is the product of their expected values.

(2.3.16}

2.3.3 Characteristic Functions

Another expectation, whose importance will shortly be apparent, is that of the ran-
dom variable defined by the transformation g(X) = e/*¥, where j = —1'2'2 This
gives

E[e/¥] = dx(w) Z_[ fx(x)e“* dx, (2.3.17

which is a complex function in w and is known as the characteristic function of X. lts
usefulness will be seen subsequently in handling of sums of r.v.’s, especially independent
ones, and in finding moments of r.v.’s. In regard to moments, note that

do o0 .
x (@) :[ Fxfx(x)e!™ dx 2.3.18)
dw oo
and thus
_ dod
L A (2.3.19)
do 1,

Extension of this argument relates higher-order moments to the characteristic func-
tion:

ad" Py (w)

X" = (— a2
Y= (2.3.20)

w=0

Those familiar with the Fourier transform of linear system theory will recognize
the characteristic function ®x (w) as (within a sign in the exponent) the Fourier transform
of the probability density function fy(x). As expected, the inverse transform gives the

"2The variable o here shouid not be confused with the earlier usage for outcomes in a sample space.
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p.d.f in terms of the characteristic function:
1 f* ;
fx(x) = — [ Oy {we ' dw. (2.3.21)
2 J_w

Example 2.13 Characteristic Function of Gaussian R.V.
By substituting the Gaussian p.d.f. (2.2.10) into (2.3.17), we obtain

oc

1 2492

dx(w) = [ a2 gjex gy 2.3.22)
—x (a2

After completing the square in the exponent and then recognizing that the integral of a
Gaussian p.df. is 1, we obtain

Dy (@) = efHw-a"e/2 (2.323)

As a check, the first two moments by (2.3.19) and (2.3.20) are X = y and X2 = u +0°,
as we carlier determined without the use of characteristic functions.

Characteristic functions provide an easy route to another important probability
density law: the p.d.f of the random variable Y = ) [, X;, where X; are independent,
is obtained by convolving the density functions for the vanables X;. That is,

fr(w) = fx, (@) * fx, () % - - % fx, (). (2.3.24)

where * denotes the convolution of two functions:

8(u) * hiu} =[ g(z)h(u — z)dz. (2.3.25)

oo

To demonstrate this result, we nse

Oy (w) = E [ewax'] =E [ﬁeij.:l

== ﬁ E [ej“’X*] = ﬁ ®y (w).
i=1 i=]

Equation "(2.3.16) was vsed in the third step of (2.3.26).

Now recall that the characteristic function and the probability density function are
a Fourier transform pair. The convolution theorem of Fourier transform calculus would
hold that

(2.3.26)

frw) = F{(dy(w))

n (2.327)
=F! (l—l <Dx,(w)) = fx, () *--- % fx (u). -
i=1

In Figure 2.3.2, we show the p.d.f. for the sum of two and three independent uniform
random variables obtained by convolution. The p.d.f. for the sum of three such variables
1s already suggestive of the Gaussian density; this is no special occurrence, as we will
demonstrate in the following section.
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Figure 2.3.2 Probability density functions for sum of one, two, and three
independent uniform r.v.’s,

2.4 PROBABILITY BOUNDS A;ID LIKR_IT THEOREMS

We will usually be unable, at least without Herculean effort, to evaluate exactly the
probability of an event of interest, for example, the probability of a transmission error in
sending a message through a noisy channel. In such cases, upper and/or lower bounds
on the probability are often acceptable, especially if the underlying mathematics or our
experience shows the bounds are reasonably tight. Beyond being a computational tool,
probability bounds are useful as well in proving many of the major results of statistical
theory and information theory.

Later in the section, we focus on results of paramount importance to communica-
tions and information theory: laws of large numbers related to sums of random variables
and the distribution of such sums as the number of variables increases, the central limit
theorems.

2.4.1 Bounds Based on First and Second Moments

Simple, but generally not very tight, bounds can be stated in terms of only first and
second moments of the random variable under study. Let ¥ be a nonnegative random
variable with p.df. f(v). Then, for « > 0, we have

PY=za)= f(y)dy
yea

(2.4.1)
= f 0u(y ~a)f(y)dy = Efu(Y —a}}],
¥z
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where w(x) is the unit-step function:

1 x>0
=1 - 4.2
u(x) lO, x <0, (24.2)
Since f(y) is nonnegative, and u(y — a)} < yja for y > 0, we obiain
E[Y
Przas [ iy - = 243)
¥y=0

This result is known as the Markov inequality. A similar bound may be derived for
the case of discrete random variables, with sums replacing integrals and probabilities
replacing p.d.f.’s.

The fact that the bound depends only on the mean of Y is both good and bad
news—it’s easy to compute, but because it requires only knowledge of the mean of
the random variable, the bound is unlikely to be very tight. This inequality says, for
example, that if we select a person at random from an adult population whose mean
height is 1.6 meters the probability that person has height 3.2 meters or greater is less
than 1! On the other hand, it is possible to construct random variables for which the
bound gives exact results; a random variable taking on values O or a positive constant,
o, will produce equality in {2.4.3),

A variation on {(2.4.3), which is perhaps more familiar, is obtained by letting ¥ be
the squared deviation of a r.v. X from its mean; that is, ¥ = (X — Y)z. Y is obviously
a nonnegative r.v., and (2.4.3) gives

., E[ix - %]
P((X~-X) 2a) s —————
o4 (2.4.4)
_ Var{X]
=—.
We could just as well take 8 = o'’ and obtain
- Var[X
PAX-T1 > p <25 (2.4.5)

which is known as the Chebyshev inequality. Consider again the heights of randomly
selected persons. If, in addition to specifying the mean height of 1.6 meters, we state
that the standard deviation of height is 0.2 meter, then the probability that a person is
shorter than I meter or taller than 2.2 meters (i.e., more than three standard deviations
in either direction from the mean height) is less than (0.2)2/[3(0.2)]> = 0.111. This is
a slightly more realistic prediction than made earlier, at least given our prior knowledge
about the distribution of heights in typical populations. Notice we have employed first-
and second-moment information, but nothing else.

Despite the apparent weakness of these bounds, they are strong enough to assert
certain laws of large numbers, which in tumn are at the very heart of information theory.
We will develop this further later in this chapter.

2.4.2 Chernoff Bounds

Whereas the upper bounds just presented are often loose, the Chemnoff bounding technique
[7] often yields much tighter numerical estimates, especially in estimating probabilities
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having to do with the tail of a distribution, and has become a fundamental tool in
communication systems analysis,

We formulate the Chemoff bound by reinspecting the development of the previous
bounds. In the first case, the desired probability was written as the expectation of a
function u(Y — @) of the random variable ¥, and we proceeded to overbound this function
by a linear function g(¥Y) = ¥ /a. [The second form bound used a quadratic upper bound
g(Y) = (Y /a)2.] We are at liberty to choose any function g(¥) overbounding the step
function k(Y — &): a computationally simple choice is to let

g(Y) =&t o, s >0, (2.4.6)
as shown in Figure 2.4.1, where s is a free (nonnegative) parameter. Furthermore. we
no longer require that ¥ be a nonnegative random variable or that ¢ > 0.

gly) = e*r-, Chernoff
Frly)

ON
= Y% Mect
g

\ / Exact multiplier gl{y)
/" """""""""""""""" '

a y
PlY>a)

=I:0 iyl y)dy +J.-1' fFiy)dy

<[atyfviy)
Figure 2.4.1 Bounding of tai! probabilities.

Using this choice for g(Y), we have
PY>a)<E [e’(y'“)] =e*E[e], s3>0, 2.4.7)

which, after the expectation is taken, is only a function of s for a given . To obtain the
tightest upper bound, we can minimize the right-hand side of (2.4.7) with respect to s,
yielding the general Chernoff bound

PY>a) < mig e E[e*"). (2.4.8)

Example 2.14 Bounds on Binomial Probabilities

Consider the independent transmission of 100 binary symbols through the error-prone chan-
nel of Example 2.3, with the channel error probability now changed to 0.01. We inquire
about the probability that more than four errors will occur in the transmission, for we may
have a code embedded in the transmission that is capable of correcting four or fewer errors
in the transmission of 100 symbols.

Let ¥ be the random number of errors. Y is the sum of 100 zero/one random variables,
Xi, with X; = 1 denoting the error event. Since each r.v. X; has an expected value of 0.01,
we observe by (2.3.7) that E[¥] = 100(0.01) = 1. In other words, the expected number of
errors in 100 transmissions is 1.
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Before developing bounds, we observe that it is not difticult 1o evaluate the evact
probability in this case. It is

PY >4 =1—-P(Y <4a)

4 ) , (24.9)
=1-3_¢/®®0.01)(0.99)"* =0.0034.
i=0
The Markov inequality would say that, because ¥ is nonnegative and ¥ = 1.
- 1
PY>4)=PY =5)=P( =5V < (2.4.10)

E ’
which is pessimistic by nearly two orders of magnitude. (The reader is invited to compute
the Chebyshev bound for this same question in Exercise 2.4.3; the result is 0.0618.)

To determine the Chernoff bound, we first compute

100
Ele]=E [efZ"f] =E []‘[ e*xf:l = ]—[E feX]. (2.4.11)
i i=1
The last step follows from the independence of the 100 variables X, .... X 100- Each lerm

in the final product is_ the same and evaluates to 0.99+0.01¢* since X; is O or 1. Substituting
this into (2.4.8), we have

P(Y >5 < mig e735(0.99 + 0.01¢*)!™ Q41
5>

Minimizing (2.4.12) with respect o s yields a best value of s = 1.651, giving P(Y > 5) =
0.016, a much more reasonable approximation to the true probability 0.0034,

Example 2.15 Chernoff Bound on Gaussian Tail Integral

Suppose X is a Gaussian r.v. with zero mean and unit variance. Earlier, the Gaussian tail
integral was defined in (2.2.12) as

) X -2
P(X 31')=Q(.T)=l Wd;’.

The Chernoff bound on this probability is

PXzx)smine ™ E[e*]. s3>0
s>0

o] 8_53/2
= mine” ** e d:.
>0 /_00 2m)i2

By completing the square on the integrand exponent, we have

(2.4.13)

{5372
X glz—sy 2

s ot
o7 e *dz

PX>x)< mine_”f
>0 —o

(2.4.14)

. —- 2
= mine $%e" /2,
5=0

This expression is minimized when 5 = x, giving the resultant bound
P(X>x)<e ™02, (2.4.15)

We have earlier seen in Section 2.2 that e"‘zﬂ/Z is an upper bound to Qix}. and in
fact a tighter upper bound for large x was e~ /2/(2m)'2x, Thus, the Chemoff bound
does not strengthen these results for large x (which were after al} obtained with some care
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involving the actual p.d.f.), but it should be observed that the three expressions all have the
same exponential dependence on the parameter x. This will always be the case with the
Chemoff bounding procedure: it gives the correct and strongest exponential dependence on
the parameters of the problem, if an exponential dependence exists.

2.4.3 Sequences, Sums, and Laws of Large Numbers

We now tum to sequences of random variables, their partial sums, and the asymptotic
behavior of these for large numbers of variables. Qur aims are to formulate laws of large
numbers and the central limit theorem, the tendency for normalized sums of r.v.’s to
approach, in cumulative distribution, the Gaussian random variable.

Let X{. X5, ..., X;, ... be a semiinfinite sequence of random variables, whi~h for
simplicity we model as independent, having common first-order density fx (x), mean m,
and variance o?. For example, these variables might be {0, 1} binary variates associated
with an information source, or they might have a uniform density on (a, b). We let

l n
s,,=;§x,-, n=12..., (2.4.16)

be the running averages associated with the X; sequence. Note that S5, is another se-
quence of random variables induced by the sequence X,. However, despite independence
of successive X;’s, the running average sequence S,.8;,...,S,,... is strongly corre-
lated. Sample functions of the random sequence S, are illustrated in Figure 2.4.2.

Q
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. ¥ .
R T e el
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. s *
e ® -_..__Q__‘_s__"__!_-.9_..."..'!-. m
[ ]
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|
Figure 2.4.2 Convergence of arithmetic averages of 1.v.’s, S, = 1y X
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" Even a casual understanding of probability theory prompts us to speculate that, as n
becomes large, the r.v. S, should be near the expected value of X. For example, in sums
of the output of an equiprobable 0/1 binary source, we should see a tendency for §, to
eventually fluctuate near % (We should be wary though of the oft-heard misinterpretation
of the following kind: after observing nine consecutive tosses of a fair coin to be heads,
the “law of averages must catch up with us,” implying that a tail is sure, or at least
more probable than 1/2, on the next toss. If we believe in independence of r.v.’s, this is
certainly fallacious reasoning.)

Now consider the implications of the Chebyshev inequality. From linearity of the
expectation operator, expressed in (2.3.7), we find that at time n

E[S,] = % ?;E[x,-] =m (2.4.172)

and, by virtue of independence of the summed variables,

1 & 2
varls, ] = 3 Var X)) = 9"— (2.4.17b)
j=1

'fhen, from (2.4.5), we have that

2

P(S,—m[21) < —

-3 (2.4.18)

which holds that for any interval (m — ¢, m + t); as n increases, the normalized partial
sum random variable S, is increasingly probable to lie in the interval. In probability
theory, we say that the sequence of random variables S, converges in probability to m,
since the probability of S, being within ¢ units of the mean goes to 1 as n — oo, for any
t > 0. This also provides a statement of a weak law of large numbers, so called because
the convergence in probability is a weak form of convergence of random sequences,
saying only that the probability of the sum being “typical” at any time n is high. The
weak law claims nothing about the convergence behavior of individual sample paths
in the ensemble of partial sum sequences. (Figure 2.4.3 illusirates a contrived example
wherein some of the partial sum sample paths do not converge to m in the classical sense
of convergence, yet the probability of selecting a sample path that is within the tolerance
band increases with time.)

Actuaily, it is possible to say stronger thmgs about the convergence of the sequence
S. under the assumptions above.- Because the variance of S, decreases monotonically
toward zero by (2.4.17b), we say S, converges in mean square to m. (This form of
convergence implies convergence of probability, by (2.4.19).) Still stronger laws of large
numbers are unnecessary for our purposes, but they would reveal that S, converges with
probability one (also called almost everywhere convergence). meaning that virtually all
experiment outcomes would have sample sums which converge to m in the usual sense
of convergence for deterministic sequences.

Although we fashioned the problem in a rather restricted vein, requiring indepen-
dence and a common distribution, it may be shown that considerably weaker conditions
suffice for the kinds of convergence we have seen here. The reader 1\5 referred to the ex-
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t (discrete)

Figure 2.4.3 Process that converges in probability, P[X (1) in shaded box]
— | as t — oo, but that does not converge with probability 1; that is, each
sample function may wander outside shaded band occasionally forever.

cellent treatments of stochastic convergence found in Papoulis [1] and Gray and Davisson
(3} for further information on this topic.

2.4.4 Central Limit Theorem

This classical theorem, with its several variations, imbues the Gaussian distribution with
special significance in probability theory. Loosely stated, it holds that an appropriately
normalized sum of independent random variables has a distribution tending to the Gaus-
sian distribution as the number of summed variables becomes large. We shall demonstrate
the result for a special case—where the random variables are independent and identically
distributed (i.i.d.).

Theorem. Let X, X>,..., X, beiid. random variables with finite mean m and
finite variance o> and with higher-order moments all finite. Let ¥; = (X, — m) Jo be a
normalized random variable. Then the random variable

-2 : 12 ~ X, —m
Z,=n Z Y, =n Z (2.4.19)
i=l

i1 9

converges in distribution to the standard Gaussian random variable having zero mean
and unit variance; that is, Fz (z) — 1 — @(z) as n — oo, where Q(x) is as defined
in (2.2.10).

Before providing the proof, we noted in the previous section that, given the theorem
conditions, the arithmetic average S, (that is with normalization by »n) converges in
probability to the mean (the weak law of large numbers). Here we normalize differently
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so that the limiting random variable does not collapse to a degenerate one (a constant).
Also, we observe that the translation and scaling make each of the variables ¥; zero
mean with unit variance. This in tum implies that Z, wili be zero mean and have unity
variance for all n as well, the latter following from independence of the ¥;.

Proof of Theorem:
Our proof relies on characteristic functions. The characteristic function of Z,, is

¢Z"(w) =FK [eij,,] =F [ejam“ﬂ Zy,] =E [ﬁ ejﬂm"ﬂyi}

i=1

(2.4.20)
= ﬁ E [ef'“’"my‘] = {<il:*y(am*1/2)]’l
i=]

since the ¥; variables are independent and identically distributed.
The characteristic function in brackets may be expanded as a power series in
wn~'72;
¢z‘l (0)
2!
where the superscript primes denote differentiation with respect 1o «.
Next, recalling how moments were linked to derivatives of the characteristic func-
tion in Section 2.3, we have that

(2.421)

@rlon™"?) = 14 0(0) + (- UZ)

f ?
6n>?

2
Dy(wn™?) = | + j— of + E[Y*]+--. (2.4.22)

(/7]
1/" g,
But since Y has zero mean and unit varance, (2.4.22) becomes

2

Sy (wn™'?y =1 — -;u— + —_— ] =757 (), (2.4.23)

where r(n) accounts for the remaining terms mvolvmg third- and higher-order moments
of ¥,. By the theorem conditions, r(n) is finite and will not increase with 7.

Now, substituting (2.4.23) into (2.4.20) and taking logarithms of both sides of the
equation gives

log, @7 () = nlog, |1 — 2 4 <) 2424
og, Pz, (w) = nlog, 2n+n‘/"’ . (2.4.24)

The expansion log, (1 +x) =x — (x?/2!) + -- - applied to the right-hand side yields

2 4
w rm} |l w
=R e o e b,
log, @z, (w) =n }: m TR T3 jl (2.4.2%)
and as n —> 0o we have '
w?
: _ v )
nlLrgc log, ¥z, (w) 5 (2.4.26)
This implies that the limiting characteristic function for Z, is
m &y (w) = ™12 (2.4.27)
=20
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which can be recognized from (2.3.23) as the characteristic function of a standard u =
0,0% = 1 Gaussian random variable, proving that Z, converges in distribution to the
standard Gaussian random variable.

The theorem conditions may be considerably relaxed without changing the funda-
mental conclusion: Most importantly, the independence assumption may be relaxed in
favor of a mixing property. Essentially, what is required is that the variables involved
in the sum are asymptotically uncorrelated for large positional separation. While the
limiting distribution is still Gaussian, the rate of convergence in » is somewhat slower
when the sequence of random variables is not independent.

It is easy to see by example how the Gaussian distribution emerges from sums of
familiar random variables. If ¥; are uniform on [—3'/2, 3!/2], thereby having zero mean
and unit variance, the p.d.f. for the sum of two and three of these independent random
variables was shown in Figure 2.3.2. These are obtained by repeated convolutions of the
underlying deénsity as described in (2.3.27). The piecewise-quadratic density for n = 3
already looks remarkably similar to the Gaussian density; the departure of the density
from Gaussian in the tails is significant, however, and often crucial in analysis,

Visitors to science museums often encounter a demonstration of the convergence of
sums of binary random variables to the Gaussian distribution. A large number of balls is
allowed to ripple downward under gravitational action through a layered network of pegs
into a number of bins, the ball taking either a left or right direction at each successive
peg independently of the previous trajectory. The final bin placement relative to the
initial horizontal position-may then be regarded as the sum of several binary random
variables. After a large number of balls have traversed the maze of pegs, the histogram
formed by the heights of the piles in each compartment is seen to mimic the Gaussian
density function, albeit a discrete approximation to it. This points out that the limiting
distribution revealed by the central limit theorem is Gaussian in integral form. Sums of
discrete random variables will always have a probability density function comprised of
impulse functions and thus cannot converge in the usual sense to a continuous density
function, but the cumulative distribution function will converge to that of the Gaussian
random variable. The same holds for the distribution of the number of errors occurring
in n uses of a BSC, as discussed in Examplie 2.14, provided n is large and np > 1.

2.5 STOCHASTIC PROCESSES

In the analysis of digital communications systems, we need to describe signals that evolve
randomly over time, such as channel noise impairments. This evolution may be either a
continuous-time or discrete-time process. The theory of stochastic, or random, processes
provides us the analysis methods. :

Stochastic processes should be understood as a natural extension of the concept
of a random variable or random vector. Recall the view of a random variable—the
assignment of a real number x(w) (or perhaps vector of numbers) to an outcome w in
the sample space 2. These could be called realizations of the random variable. In a
stochastic process we associate a function of time, x(w.!) — 00 < t oo with each point
w € {2 and call each a sample function or realization of the random process. The entire
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collection of these sample functions is called the ensemble or simply the process. When
we speak of a random process, we figuratively have in mind the entire ensemble, not a
single sample function, although in practice we generally deal with one sample function.
We write x{(w, ) when we wish to explicitly denote the sample function assigned 1o w.
This raises an important practical issue, which we shall address shortly.

More formally, a stochastic process X (r) is merely an infinite coliection of random
variables, indexed by time in some index set /; that is, X (1) = {(X(;).t, € []. If
the index set is discrete, we refer to the process as a discrete-time process or a random
sequence, while if the index set is a continuous variable, we say X (t) is a continuous-time
process.

Figure 2.5.1a illustrates this ensembie viewpoint for a continuous-time process and
also the concept that if we freeze time, say at 1 = f;, then the collection of sample values
x(w;, ty) is a random variable, just as described previously. This random variable has all
the attributes we have discussed—a distribution function, density function, moments, and
so on. One distinction is important, however: the exact nature of these quantities may
depend on the choice of 1,. For example, the first-order distribution function should be
written as Fy,(xo; #o) to indicate explicitly this time dependence. Likewise, -probability
densities and quantities derived from them should carry an explicit time tagging.

X((!.h. ﬂ}\/\
ty
- ] M/\
P o t, \ g

xlwg, 1

t

x(oy, B

Figure 2.5.1a Ensemble of sample functions.

To generalize this, consider two instants 7, and f1. The process values at these
two times have bivariate cumulative distribution and probability density functions that
depend in general on the exact values of these times. For example, the joint distribution
function would be written as F Xo.X, (X0, X1 2p. 1)), where X; denotes the random variable
defined by X(w, ). The function specifies the probability that at times t, and- 1, the
associated random variables X (w, to) and X (. 1,) are, respectively, less than xp and x;.
This lends a ceiling function interpretation, as indicated in Figure 2.5.1b.
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